MHB How can we conclude from that that I is a principal ideal?

  • Thread starter Thread starter mathmari
  • Start date Start date
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $R$ be a commutative ring with unit.
I want to show that if $I$ is an ideal of $R$ then $I$ is a free $R$-module iff it is a principal ideal that is generated by an element $a$ that is not a zero-divisor in $R$.

Suppose that $I$ is an ideal of $R$ and it is a free $R$-module.
Then it has a basis, i.e., a generating set consisting of linearly independent elements.
How can we conclude from that that $I$ is a principal ideal? (Wondering)
 
Physics news on Phys.org
Suppose that $I$ is a free ideal, so it has a basis, i.e., a generating set consisting of linearly independent elements. Suppose that $I$ is not a principal domain.
Does this mean that the basis has more than one element? (Wondering)
Suppose that it has two elements in the basis, say $x_1,x_2$.
Then $I=\{r_1x_1+r_2x_2\}$.
Do we take $r_1=x_2$ and $r_2=−x_1$ ? (Wondering)
Then we would have $x_2x_1−x_1x_2=0$. But since the set is linearly independent, and $x_1,x_2$ are non-zero, we have a contradiction.
Therefore, it is generated by one element $a$. Can we say also that $a$ is not a zero-divisor in $R$ ? (Wondering)
Is this correct? (Wondering)

For the other direction, suppose that $I$ is a principal ideal, that is generated by an element $a$ that is not a zero-divisor in $R$.
How could we conclude that $I$ is a free $R$-module? (Wondering)
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
923
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
777
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
839
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
994