MHB How can we determine the reflection across a given line in Hesse normal form?

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Line Reflection
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $g$ be a line with equation $g:ax+by+c=0$ in Hesse normal form. I want to show that the reflection across $g$ is described by \begin{equation*}\binom{x}{y}\mapsto \binom{x}{y}-2(ax+by+c)\binom{a}{b}\end{equation*}

At the reflection across $g$ it holds the following for the image $P'$ of each point $P$:
  • $P'$ lies on the perpendicular to $g$ through $P$.
  • $g$ bisects $PP'$.
So to show the desired result, do we have to find the perpendicular line to $g$ ? (Wondering)
 
Physics news on Phys.org
Hey mathmari! (Smile)

Let's draw a picture:
\begin{tikzpicture}[>=stealth]
\coordinate (C) at (4,3);
\coordinate (P) at (4.5,6.5);
\coordinate (Q) at (2.5,5);
\coordinate (P') at (0.5,3.5);
\draw[->, green, ultra thick] (Q) -- node[above left] {$(\vec{CP} \cdot \mathbf n)\mathbf n$} (P);
\draw (Q) -- (P');
\draw[->, blue] (0,0) -- node[below right] {$-c\mathbf n$} (C) node
{$C$};
\draw[->, blue, ultra thick] (0,0) -- node[below right] {$\mathbf n = \binom ab$} (4/5,3/5);
\draw[blue, ultra thick] (1,7) -- (7, -1) node
{$g:\mathbf n \cdot \mathbf x + c = ax+by+c=0$};
\draw[->, red, ultra thick] (0,0) -- (P);
\draw[->, red, ultra thick] (0,0) -- (P');
\draw[->, green, ultra thick] (C) -- (P);
\fill (P) circle (0.05) node
{$P$};
\fill (Q) circle (0.05) node [below] {$Q$};
\fill (P') circle (0.05) node
{$P'$};
\fill circle (0.1) node [below] {$O$};
\end{tikzpicture}
We are given $\vec{OP}$ and we want to find $\vec{OP'}$ yes?

Can we construct the vector $\vec{OP'}$ using $\vec{OP}$, $\mathbf n$, and $c$? (Wondering)​
 
I like Serena said:
Let's draw a picture:
\begin{tikzpicture}[>=stealth]
\coordinate (C) at (4,3);
\coordinate (P) at (4.5,6.5);
\coordinate (Q) at (2.5,5);
\coordinate (P') at (0.5,3.5);
\draw[->, green, ultra thick] (Q) -- node[above left] {$(\vec{CP} \cdot \mathbf n)\mathbf n$} (P);
\draw (Q) -- (P');
\draw[->, blue] (0,0) -- node[below right] {$-c\mathbf n$} (C) node
{$C$};
\draw[->, blue, ultra thick] (0,0) -- node[below right] {$\mathbf n = \binom ab$} (4/5,3/5);
\draw[blue, ultra thick] (1,7) -- (7, -1) node
{$g:\mathbf n \cdot \mathbf x + c = ax+by+c=0$};
\draw[->, red, ultra thick] (0,0) -- (P);
\draw[->, red, ultra thick] (0,0) -- (P');
\draw[->, green, ultra thick] (C) -- (P);
\fill (P) circle (0.05) node
{$P$};
\fill (Q) circle (0.05) node [below] {$Q$};
\fill (P') circle (0.05) node
{$P'$};
\fill circle (0.1) node [below] {$O$};
\end{tikzpicture}
We are given $\vec OP$ and we want to find $\vec OP'$ yes?

Can we construct the vector $\vec OP'$ using $\vec OP$, $\mathbf n$, and $c$? (Wondering)​
It holds that $$\vec OP'+(-c\mathbf n)=\vec OP$$ doesn't it? (Wondering)​
 
mathmari said:
It holds that $$\vec OP'+(-c\mathbf n)=\vec OP$$ doesn't it? (Wondering)

Ah no, it doesn't.
It may look like it, but that's just due to a bit of unfortunate choices for the coordinates in the drawing. (Blush)
OCPP' is generally not a parallellogram.

Let me rectify that:
\begin{tikzpicture}[>=stealth]
\coordinate (O) at (-2,-1.5);
\coordinate (C) at (4,3);
\coordinate (P) at (4.5,6.5);
\coordinate (Q) at (2.5,5);
\coordinate (P') at (0.5,3.5);
\draw[->, green, ultra thick] (Q) -- node[above left] {$(\vec{CP} \cdot \mathbf n)\mathbf n$} (P);
\draw (Q) -- (P');
\draw[->, blue] (O) -- node[below right] {$-c\mathbf n$} (C) node
{$C$};
\draw[->, blue, ultra thick] (O) -- node[below right] {$\mathbf n = \binom ab$} +(4/5,3/5);
\draw[blue, ultra thick] (1,7) -- (7, -1) node
{$g:\mathbf n \cdot \mathbf x + c = ax+by+c=0$};
\draw[->, red, ultra thick] (O) -- (P);
\draw[->, red, ultra thick] (O) -- (P');
\draw[->, green, ultra thick] (C) -- (P);
\fill (P) circle (0.05) node
{$P$};
\fill (Q) circle (0.05) node [below] {$Q$};
\fill (P') circle (0.05) node
{$P'$};
\fill (O) circle (0.1) node [below] {$O$};
\end{tikzpicture}​
 
I don't really know how we could get $\vec{OP'}$. Could you give me a hint? (Wondering)
 
mathmari said:
I don't really know how we could get $\vec{OP'}$. Could you give me a hint?

Isn't $\vec{OP'}=\vec{OP}-2(\vec{CP}\cdot\mathbf n)\mathbf n$ and $\vec{CP}=\vec{OP}-(-c\mathbf n)$?
Can we solve that? (Wondering)
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top