MHB How can we find the coefficients?

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Coefficients
Click For Summary
The discussion centers on solving for the coefficients \( c_j \) in the general solution of the initial value problem \( u'(t) = Au(t) \) with given eigenvalues and eigenvectors of matrix \( A \). The initial condition leads to the equation \( u^0 = \sum_{j=1}^m c_j \phi^{(j)} \), prompting questions about using the inverse of the eigenvector matrix to isolate \( c_j \). Participants explore whether the eigenvectors are functions of time and the implications of orthonormality, particularly in relation to the symmetry of matrix \( A \). The conversation concludes with the acknowledgment that further simplification of the formula for \( c_j \ may depend on additional properties of \( A \).
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We have the initial value problem $$u'(t)=Au(t) \ \ , \ \ 0 \leq t \leq T \\ u(0)=u^0 \\ u \in \mathbb{R}^m$$ A is a $m \times m$ matrix

The eigenvalues of $A$ are $\lambda_j$ and the corresponding eigenvectors are $\phi^{(j)}$.

The general solution of initial value problem is $$u(t)=\sum_{j=1}^m c_j e^{\lambda_jt}\phi^{(j)}$$

right??

For $t=0$ we have $$u^0=\sum_{j=1}^m c_j \phi^{(j)}$$ How can we solve for $c_j$ ?? (Wondering)

Do we maybe have to use a dot product?? (Wondering)
 
Mathematics news on Phys.org
mathmari said:
Hey! :o

We have the initial value problem $$u'(t)=Au(t) \ \ , \ \ 0 \leq t \leq T \\ u(0)=u^0 \\ u \in \mathbb{R}^m$$ A is a $m \times m$ matrix

The eigenvalues of $A$ are $\lambda_j$ and the corresponding eigenvectors are $\phi^{(j)}$.

The general solution of initial value problem is $$u(t)=\sum_{j=1}^m c_j e^{\lambda_jt}\phi^{(j)}$$

right??

For $t=0$ we have $$u^0=\sum_{j=1}^m c_j \phi^{(j)}$$ How can we solve for $c_j$ ?? (Wondering)

Do we maybe have to use a dot product?? (Wondering)

Hi! (Wave)

Let's make that:
$$u^0=\sum_{j=1}^m c_j \phi^{(j)} = \Big(\phi^{(j)}\Big) \begin{bmatrix}c_1\\c_2\\\vdots\\c_n\end{bmatrix}$$
See how we can solve it for $c_j$? (Wondering)
 
Last edited:
I like Serena said:
Let's make that:
$$u^0=\sum_{j=1}^m c_j \phi^{(j)}(0) = \Big(\phi^{(j)}(0)\Big) \begin{bmatrix}c_1\\c_2\\\vdots\\c_n\end{bmatrix}$$
See how we can solve it for $c_j$? (Wondering)

Are the eigenvectors $\phi^{(j)}$ a function of $t$?? (Wondering) Because you write $\phi^{(j)}(0)$.

$\Big (\phi^{(j)}(0)\Big )$ is a matrix, isn't it?? (Wondering) So, we have to find the inverse, or not??
 
mathmari said:
Are the eigenvectors $\phi^{(j)}$ a function of $t$?? (Wondering) Because you write $\phi^{(j)}(0)$.

No I didn't! (Blush)

$\phi^{(j)}$ is a matrix, isn't it?? (Wondering) So, we have to find the inverse, or not??

Yep. (Nod)
 
I like Serena said:
Yep. (Nod)

So, $$u^0\Big (\phi^{(j)}\Big )^{-1}=\begin{bmatrix}
c_1\\
c_2\\
\cdot\\
\cdot\\
\cdot \\
c_m
\end{bmatrix}$$ Is this correct?? (Wondering)

Now we have the vector $\begin{bmatrix}
c_1\\
c_2\\
\cdot\\
\cdot\\
\cdot \\
c_m
\end{bmatrix}$. How can we write the formula for $c_j$ ?? (Wondering)

I found in my book the following solution $$u(t)=\sum_{j=1}^m e^{\lambda t}(u(0), \phi^{(j)})\phi^{(j)}$$ where $(\cdot , \cdot)$ is the euclidean dot product.
But how did we find that?? (Wondering)
 
mathmari said:
So, $$u^0\Big (\phi^{(j)}\Big )^{-1}=\begin{bmatrix}
c_1\\
c_2\\
\cdot\\
\cdot\\
\cdot \\
c_m
\end{bmatrix}$$ Is this correct?? (Wondering)

The product is not commutative, so that should be
$$\Big (\phi^{(j)}\Big )^{-1} u^0=\begin{bmatrix}
c_1\\
c_2\\
\cdot\\
\cdot\\
\cdot \\
c_m
\end{bmatrix}$$
Now we have the vector $\begin{bmatrix}
c_1\\
c_2\\
\cdot\\
\cdot\\
\cdot \\
c_m
\end{bmatrix}$. How can we write the formula for $c_j$ ?? (Wondering)

That is a formula for $c_j$. To simplify it, we'd need more information, like $A$ being symmetric. (Wasntme)

I found in my book the following solution $$u(t)=\sum_{j=1}^m e^{\lambda t}(u(0), \phi^{(j)})\phi^{(j)}$$ where $(\cdot , \cdot)$ is the euclidean dot product.
But how did we find that?? (Wondering)

Looks there is an assumption in there that the eigenvectors are orthonormal.
I think that is only possible if the matrix $A$ is symmetric, but that does not seem to be given - or is it? (Wondering)
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
12
Views
3K