How can we find the coefficients?

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Coefficients
Click For Summary
SUMMARY

The discussion centers on solving the initial value problem defined by the differential equation $$u'(t)=Au(t)$$, where \( A \) is an \( m \times m \) matrix with eigenvalues \( \lambda_j \) and corresponding eigenvectors \( \phi^{(j)} \). The general solution is expressed as $$u(t)=\sum_{j=1}^m c_j e^{\lambda_j t}\phi^{(j)}$$. To find the coefficients \( c_j \), participants suggest using the equation $$u^0=\sum_{j=1}^m c_j \phi^{(j)}$$ and discuss the necessity of the inverse of the matrix formed by eigenvectors. The solution also involves the assumption that eigenvectors are orthonormal, which is valid if \( A \) is symmetric.

PREREQUISITES
  • Understanding of linear algebra concepts, specifically eigenvalues and eigenvectors.
  • Familiarity with differential equations, particularly initial value problems.
  • Knowledge of matrix operations, including matrix inversion.
  • Basic understanding of the Euclidean dot product.
NEXT STEPS
  • Study the properties of eigenvalues and eigenvectors in the context of linear transformations.
  • Learn about symmetric matrices and their implications on eigenvector orthonormality.
  • Explore methods for solving initial value problems in differential equations.
  • Investigate the use of the Euclidean dot product in vector spaces and its applications in solving linear equations.
USEFUL FOR

Mathematicians, engineers, and students studying differential equations and linear algebra who need to solve initial value problems involving matrix equations.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We have the initial value problem $$u'(t)=Au(t) \ \ , \ \ 0 \leq t \leq T \\ u(0)=u^0 \\ u \in \mathbb{R}^m$$ A is a $m \times m$ matrix

The eigenvalues of $A$ are $\lambda_j$ and the corresponding eigenvectors are $\phi^{(j)}$.

The general solution of initial value problem is $$u(t)=\sum_{j=1}^m c_j e^{\lambda_jt}\phi^{(j)}$$

right??

For $t=0$ we have $$u^0=\sum_{j=1}^m c_j \phi^{(j)}$$ How can we solve for $c_j$ ?? (Wondering)

Do we maybe have to use a dot product?? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

We have the initial value problem $$u'(t)=Au(t) \ \ , \ \ 0 \leq t \leq T \\ u(0)=u^0 \\ u \in \mathbb{R}^m$$ A is a $m \times m$ matrix

The eigenvalues of $A$ are $\lambda_j$ and the corresponding eigenvectors are $\phi^{(j)}$.

The general solution of initial value problem is $$u(t)=\sum_{j=1}^m c_j e^{\lambda_jt}\phi^{(j)}$$

right??

For $t=0$ we have $$u^0=\sum_{j=1}^m c_j \phi^{(j)}$$ How can we solve for $c_j$ ?? (Wondering)

Do we maybe have to use a dot product?? (Wondering)

Hi! (Wave)

Let's make that:
$$u^0=\sum_{j=1}^m c_j \phi^{(j)} = \Big(\phi^{(j)}\Big) \begin{bmatrix}c_1\\c_2\\\vdots\\c_n\end{bmatrix}$$
See how we can solve it for $c_j$? (Wondering)
 
Last edited:
I like Serena said:
Let's make that:
$$u^0=\sum_{j=1}^m c_j \phi^{(j)}(0) = \Big(\phi^{(j)}(0)\Big) \begin{bmatrix}c_1\\c_2\\\vdots\\c_n\end{bmatrix}$$
See how we can solve it for $c_j$? (Wondering)

Are the eigenvectors $\phi^{(j)}$ a function of $t$?? (Wondering) Because you write $\phi^{(j)}(0)$.

$\Big (\phi^{(j)}(0)\Big )$ is a matrix, isn't it?? (Wondering) So, we have to find the inverse, or not??
 
mathmari said:
Are the eigenvectors $\phi^{(j)}$ a function of $t$?? (Wondering) Because you write $\phi^{(j)}(0)$.

No I didn't! (Blush)

$\phi^{(j)}$ is a matrix, isn't it?? (Wondering) So, we have to find the inverse, or not??

Yep. (Nod)
 
I like Serena said:
Yep. (Nod)

So, $$u^0\Big (\phi^{(j)}\Big )^{-1}=\begin{bmatrix}
c_1\\
c_2\\
\cdot\\
\cdot\\
\cdot \\
c_m
\end{bmatrix}$$ Is this correct?? (Wondering)

Now we have the vector $\begin{bmatrix}
c_1\\
c_2\\
\cdot\\
\cdot\\
\cdot \\
c_m
\end{bmatrix}$. How can we write the formula for $c_j$ ?? (Wondering)

I found in my book the following solution $$u(t)=\sum_{j=1}^m e^{\lambda t}(u(0), \phi^{(j)})\phi^{(j)}$$ where $(\cdot , \cdot)$ is the euclidean dot product.
But how did we find that?? (Wondering)
 
mathmari said:
So, $$u^0\Big (\phi^{(j)}\Big )^{-1}=\begin{bmatrix}
c_1\\
c_2\\
\cdot\\
\cdot\\
\cdot \\
c_m
\end{bmatrix}$$ Is this correct?? (Wondering)

The product is not commutative, so that should be
$$\Big (\phi^{(j)}\Big )^{-1} u^0=\begin{bmatrix}
c_1\\
c_2\\
\cdot\\
\cdot\\
\cdot \\
c_m
\end{bmatrix}$$
Now we have the vector $\begin{bmatrix}
c_1\\
c_2\\
\cdot\\
\cdot\\
\cdot \\
c_m
\end{bmatrix}$. How can we write the formula for $c_j$ ?? (Wondering)

That is a formula for $c_j$. To simplify it, we'd need more information, like $A$ being symmetric. (Wasntme)

I found in my book the following solution $$u(t)=\sum_{j=1}^m e^{\lambda t}(u(0), \phi^{(j)})\phi^{(j)}$$ where $(\cdot , \cdot)$ is the euclidean dot product.
But how did we find that?? (Wondering)

Looks there is an assumption in there that the eigenvectors are orthonormal.
I think that is only possible if the matrix $A$ is symmetric, but that does not seem to be given - or is it? (Wondering)
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
0
Views
2K
  • · Replies 25 ·
Replies
25
Views
4K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
1
Views
2K