MHB How can we prove $P(A \cap B) = P(A) \cap P(B)$?

  • Thread starter Thread starter tmt1
  • Start date Start date
  • Tags Tags
    Power Sets
AI Thread Summary
To prove that $P(A \cap B) = P(A) \cap P(B)$, one must demonstrate that each element of $P(A \cap B)$ is contained in $P(A) \cap P(B)$ and vice versa. This involves using the definitions of power sets and intersections. The proof starts by assuming an element $X$ belongs to $P(A \cap B)$, which implies $X \subseteq A \cap B$. From the properties of intersections, it follows that $X$ must also be a subset of both $A$ and $B$, thus belonging to $P(A)$ and $P(B)$. Ultimately, the equality holds as both sets contain the same elements.
tmt1
Messages
230
Reaction score
0
$P(A \cap B) = P(A) \cap P(B)$

How can we prove this to be true?
 
Last edited by a moderator:
Physics news on Phys.org
Hi tmt,

To show two sets $X$ and $Y$ are equal, you must prove that every element of $X$ belongs to $Y$ and vice versa. In your case, you must prove that every element of $P(A\cap B)$ belongs to $P(A)\cap P(B)$, and every element of $P(A) \cap P(B)$ belongs to $P(A\cap B)$. Use the definitions of the power set and intersection $\cap$ to do it.
 
Normally, the way one proves that two sets are equal is to show they contain exactly the same elements-which is equivalent to showing they are subsets of each other.

Here's how one such proof might begin:

Suppose $X \in P(A \cap B)$. Then $X \subseteq A \cap B$.

Now $A \cap B \subseteq A$, and $A \cap B \subseteq B$, by the definition of "$\cap$".

So, $X \subseteq A$, and...
 
I'm taking a look at intuitionistic propositional logic (IPL). Basically it exclude Double Negation Elimination (DNE) from the set of axiom schemas replacing it with Ex falso quodlibet: ⊥ → p for any proposition p (including both atomic and composite propositions). In IPL, for instance, the Law of Excluded Middle (LEM) p ∨ ¬p is no longer a theorem. My question: aside from the logic formal perspective, is IPL supposed to model/address some specific "kind of world" ? Thanks.
I was reading a Bachelor thesis on Peano Arithmetic (PA). PA has the following axioms (not including the induction schema): $$\begin{align} & (A1) ~~~~ \forall x \neg (x + 1 = 0) \nonumber \\ & (A2) ~~~~ \forall xy (x + 1 =y + 1 \to x = y) \nonumber \\ & (A3) ~~~~ \forall x (x + 0 = x) \nonumber \\ & (A4) ~~~~ \forall xy (x + (y +1) = (x + y ) + 1) \nonumber \\ & (A5) ~~~~ \forall x (x \cdot 0 = 0) \nonumber \\ & (A6) ~~~~ \forall xy (x \cdot (y + 1) = (x \cdot y) + x) \nonumber...
Back
Top