MHB How can we use hints to prove divisibility of Fibonacci numbers?

  • Thread starter Thread starter evinda
  • Start date Start date
Click For Summary
To prove that 30290 divides the Fibonacci number F_m, where m=n^13-n and n>1, it is essential to first establish that a^13 ≡ a (mod 2730). This is shown using Fermat's Little Theorem for the prime factors of 2730, confirming that 2730 divides a^13-a. The next step involves leveraging the relationship that if n divides m, then F_n divides F_m. Participants suggest that additional hints or properties may be necessary to connect the established modular equivalence to the divisibility of F_m by 30290. The discussion emphasizes the need for further exploration of Fibonacci properties in relation to divisibility.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

I want to show that if $m=n^{13}-n$ and $n>1$ then $30290 \mid F_m$. (Hint: Show first that $a^{13} \equiv a \mod{2730}$.)

$F_m$ is the $m$-th Fibonacci number.I have shown the hint as follows:

$2730=2 \cdot 3 \cdot 5 \cdot 7 \cdot 13$.

Using Ferma's little theorem, we deduce that $a^{13}\equiv a \pmod{5}$, $a^{13}\equiv a \pmod{2}$, $a^{13}\equiv a \pmod{3}$, $a^{13}\equiv a \pmod{7}$ and $a^{13}\equiv a \pmod{13}$.Since $2,3,6,7,13$ are all relatively prime, we deduce that $2730 \mid a^{13}-a$.

But how can we use the fact that $a^{13} \equiv a \mod{2730}$ in order to deduce that $30290 \mid F_m$ ? (Thinking)
 
Mathematics news on Phys.org
Hey evinda! (Wave)

I think we need another hint.
Something like $n\mid m \Rightarrow F_n \mid F_m$.
Can we use that? Or something else? (Wondering)
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
9
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K