How Can You Minimize This Complex Square Root Expression for Positive x and y?

  • Context: High School 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on minimizing the complex square root expression $\sqrt{x^2-7\sqrt{2}x+49}+\sqrt{x^2-\sqrt{2}xy+y^2}+\sqrt{y^2-10y+50}$ for positive values of x and y. Participants, including @malawi_glenn, confirm that while various strategies were attempted, the solutions ultimately required extensive calculations without shortcuts. The consensus is that the problem is intricate and demands a thorough approach to reach the correct answer.

PREREQUISITES
  • Understanding of calculus and optimization techniques
  • Familiarity with square root functions and their properties
  • Knowledge of algebraic manipulation and simplification
  • Experience with mathematical problem-solving strategies
NEXT STEPS
  • Study advanced calculus techniques for optimization problems
  • Explore algebraic methods for simplifying square root expressions
  • Learn about geometric interpretations of minimization problems
  • Investigate numerical methods for solving complex mathematical expressions
USEFUL FOR

Mathematicians, students studying calculus, and anyone interested in optimization problems involving square root expressions will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----
Minimize $\sqrt{x^2-7\sqrt{2}x+49}+\sqrt{x^2-\sqrt{2}xy+y^2}+\sqrt{y^2-10y+50}$ for positive $x$ and $y$.

-----

 
Physics news on Phys.org
Is 13 correct?
 
  • Like
Likes   Reactions: anemone
malawi_glenn said:
Is 13 correct?
Yes!
 
anemone said:
Yes!
Ok, will try to type my solution. It is not short...
 
  • Like
Likes   Reactions: anemone
I got to the same answer as @malawi_glenn going through the process directly. I had hoped to find some clever shortcut but in the end I had to just do all the work and I agree, it was definitely not short!
Given, $$f(x,y) = \sqrt{x^2-7\sqrt{2}x+49}+\sqrt{x^2-\sqrt{2}xy+y^2}+\sqrt{y^2-10y+50}$$then

$$\frac{ \partial f(x,y)}{\partial x}= \frac{1}{2} \left( \frac{2x-\sqrt{2}y}{\sqrt{x^2 -\sqrt{2}xy +y^2}}+ \frac{2x-7\sqrt{2}}{\sqrt{x^2 -7\sqrt{2}x+49}}\right)$$and

$$\frac{ \partial f(x,y)}{\partial y}= \frac{1}{2} \left( \frac{2y-\sqrt{2}x}{\sqrt{x^2 -\sqrt{2}xy +y^2}}+ \frac{2y-10}{\sqrt{y^2 -10y+50}}\right)$$setting these equal to zero and solving (see appendix) gives us;

##y= \large \frac{-7x}{x-7\sqrt{2}}## and ##y =\large \frac{10x}{x+5\sqrt{2}}##

The intersection of these two functions is the minimum. In the positive quadrant these are both monotonically increasing towards asymptotes and thus intersect only once besides at ##(0,0)##. Setting them equal finds the intersection point;

$$ \frac{-7x}{x-7\sqrt{2}} = \frac{10x}{x+5\sqrt{2}}$$ or

$$ -7x (x+5\sqrt{2})= 10x(x-7\sqrt{2})$$ or

$$x(17x -35\sqrt{2})$$ giving ## x=0## or ## x=\large\frac{35\sqrt{2}}{17}## and thus ## y= \large\frac{35}{12}## putting these into the original function gives ##13## as shown in the following appendix.

Appendix:

Set $$\frac{ \partial f(x,y)}{\partial x}= \frac{1}{2} \left( \frac{2x-\sqrt{2}y}{\sqrt{x^2 -\sqrt{2}xy +y^2}}+ \frac{2x-7\sqrt{2}}{\sqrt{x^2 -7\sqrt{2}x+49}}\right) = 0$$ then

$$(2x-\sqrt{2}y)\sqrt{x^2 -7\sqrt{2}x+49} + (2x-7\sqrt{2})\sqrt{x^2 -\sqrt{2}xy +y^2}=0$$or
$$(2x-\sqrt{2}y)\sqrt{x^2 -7\sqrt{2}x+49} = (-2x+7\sqrt{2})\sqrt{x^2 -\sqrt{2}xy +y^2}$$ square both sides;

$$(4x^2 -4\sqrt{2}xy+2y^2)(x^2-7\sqrt{2}x+49)=(4x^2 -28\sqrt{2}x +98)(x^2-\sqrt{2}xy+y^2)$$ the LHS is
$$4x^4 -4\sqrt{2}x^3y +2x^2y^2 -28\sqrt{2}x^3 +49x^2y-14\sqrt{2}xy^2+196x^2-196\sqrt{2}xy+98y^2$$
the RHS is
$$4x^4 -4\sqrt{2}x^3y +4x^2y^2 -28\sqrt{2}x^3 +49x^2y-28\sqrt{2}xy^2+98x^2-98\sqrt{2}xy+98y^2$$ some terms cancel out leaving

$$2x^2y^2-14\sqrt{2}xy^2 +196x^2 -196\sqrt{2} xy=4x^2y^2 -28\sqrt{2}xy^2 +98x^2-98\sqrt{2}xy$$ or
$$2x^2y^2-14\sqrt{2}xy^2-98x^2-98\sqrt{2}xy=0$$ or
$$y^2(x-7\sqrt{2}) -49\sqrt{2}y -49x=0$$ giving a solution ##y= \large \frac{-7x}{x-7\sqrt{2}}##

Now set $$ \frac{ \partial f(x,y)}{\partial y}=\frac{1}{2} \left( \frac{2y-\sqrt{2}x}{\sqrt{x^2 -\sqrt{2}xy +y^2}}+ \frac{2y-10}{\sqrt{y^2 -10y+50}}\right)=0$$ giving

$$(2y-\sqrt{2}x)\sqrt{y^2 -10y+50}+(2y-10)\sqrt{x^2 -\sqrt{2}xy +y^2}=0$$or

$$(2y-\sqrt{2}x)\sqrt{y^2 -10y+50}=(-2y+10)\sqrt{x^2 -\sqrt{2}xy +y^2}$$again, squaring both sides

$$(4y^2-4\sqrt{2}xy+2x^2)(y^2 -10y+50)=(4y^2-40y+100)(x^2 -\sqrt{2}xy +y^2)$$ the LHS is
$$4y^4 -4\sqrt{2}xy^3+2x^2y^2-40y^3+40\sqrt{2}xy^2-20x^2y+200y^2-200\sqrt{2}xy+100x^2$$ the RHS is
$$4y^4 -4\sqrt{2}xy^3+4x^2y^2-40y^3+40\sqrt{2}xy^2-40x^2 y+100y^2-100\sqrt{2}xy+100x^2$$ giving
$$2x^2y^2-20x^2y-100y^2-100\sqrt{2}xy=0$$ or
$$y(2x^2-100)=20x^2+100\sqrt{2}x$$ or
$$y= \frac{20x(x+5\sqrt{2})}{2(x^2+50)}= \frac{10x}{x-5\sqrt{2}}$$

Now put the values for ##(x,y)## into the original equation with ##x=\large\frac{35\sqrt{2}}{17}##, ##y=\large\frac{35}{12}##, ##x^2=\large\frac{2450}{289}## and ##y^2=\large\frac{1225}{144}##

$$\sqrt{x^2-7\sqrt{2}x+49}+\sqrt{x^2-\sqrt{2}xy+y^2}+\sqrt{y^2-10y+50}$$is
$$\sqrt{ \frac{2450}{289}-7\sqrt{2}\frac{35\sqrt{2}}{17} +49}+\sqrt{\frac{2450}{289}-\sqrt{2}\frac{35\sqrt{2}}{17}\frac{35}{12}+\frac{1225}{144}}+\sqrt{\frac{1225}{144}-10\frac{35}{12}+50}$$
with
$$\sqrt{ \frac{2450}{289}-7\sqrt{2}\frac{35\sqrt{2}}{17} +49}=\sqrt{\frac{2450}{289} -\frac{8330}{289} +\frac{14161}{289}}= \sqrt{\frac{8281}{289}}=\frac{91}{17}$$and

$$\sqrt{\frac{2450}{289}-\sqrt{2}\frac{35\sqrt{2}}{17}\frac{35}{12}+\frac{1225}{144}}=\sqrt{\frac{2450}{289}-\frac{2450}{204} + \frac{1225}{144}} = \sqrt{\frac{207025}{41616}} = \frac{455}{204}$$ and
$$\sqrt{\frac{1225}{144}-10\frac{35}{12}+50}=\sqrt{\frac{1225}{144}-\frac{4200}{144}+\frac{7200}{144}}=\sqrt{\frac{12625}{144}}= \frac{65}{12}$$thus
$$f_{min}=\frac{91}{17} +\frac{455}{204}+ \frac{65}{12}=\frac{1092}{204}+\frac{455}{204}+\frac{1105}{204}=\frac{2652}{204}=13$$[\spoiler]
 
  • Like
Likes   Reactions: malawi_glenn
bob012345 said:
I got to the same answer as @malawi_glenn going through the process directly. I had hoped to find some clever shortcut but in the end I had to just do all the work and I agree, it was definitely not short!
Given, $$f(x,y) = \sqrt{x^2-7\sqrt{2}x+49}+\sqrt{x^2-\sqrt{2}xy+y^2}+\sqrt{y^2-10y+50}$$then

$$\frac{ \partial f(x,y)}{\partial x}= \frac{1}{2} \left( \frac{2x-\sqrt{2}y}{\sqrt{x^2 -\sqrt{2}xy +y^2}}+ \frac{2x-7\sqrt{2}}{\sqrt{x^2 -7\sqrt{2}x+49}}\right)$$and

$$\frac{ \partial f(x,y)}{\partial y}= \frac{1}{2} \left( \frac{2y-\sqrt{2}x}{\sqrt{x^2 -\sqrt{2}xy +y^2}}+ \frac{2y-10}{\sqrt{y^2 -10y+50}}\right)$$setting these equal to zero and solving (see appendix) gives us;

##y= \large \frac{-7x}{x-7\sqrt{2}}## and ##y =\large \frac{10x}{x+5\sqrt{2}}##

The intersection of these two functions is the minimum. In the positive quadrant these are both monotonically increasing towards asymptotes and thus intersect only once besides at ##(0,0)##. Setting them equal finds the intersection point;

$$ \frac{-7x}{x-7\sqrt{2}} = \frac{10x}{x+5\sqrt{2}}$$ or

$$ -7x (x+5\sqrt{2})= 10x(x-7\sqrt{2})$$ or

$$x(17x -35\sqrt{2})$$ giving ## x=0## or ## x=\large\frac{35\sqrt{2}}{17}## and thus ## y= \large\frac{35}{12}## putting these into the original function gives ##13## as shown in the following appendix.

Appendix:

Set $$\frac{ \partial f(x,y)}{\partial x}= \frac{1}{2} \left( \frac{2x-\sqrt{2}y}{\sqrt{x^2 -\sqrt{2}xy +y^2}}+ \frac{2x-7\sqrt{2}}{\sqrt{x^2 -7\sqrt{2}x+49}}\right) = 0$$ then

$$(2x-\sqrt{2}y)\sqrt{x^2 -7\sqrt{2}x+49} + (2x-7\sqrt{2})\sqrt{x^2 -\sqrt{2}xy +y^2}=0$$or
$$(2x-\sqrt{2}y)\sqrt{x^2 -7\sqrt{2}x+49} = (-2x+7\sqrt{2})\sqrt{x^2 -\sqrt{2}xy +y^2}$$ square both sides;

$$(4x^2 -4\sqrt{2}xy+2y^2)(x^2-7\sqrt{2}x+49)=(4x^2 -28\sqrt{2}x +98)(x^2-\sqrt{2}xy+y^2)$$ the LHS is
$$4x^4 -4\sqrt{2}x^3y +2x^2y^2 -28\sqrt{2}x^3 +49x^2y-14\sqrt{2}xy^2+196x^2-196\sqrt{2}xy+98y^2$$
the RHS is
$$4x^4 -4\sqrt{2}x^3y +4x^2y^2 -28\sqrt{2}x^3 +49x^2y-28\sqrt{2}xy^2+98x^2-98\sqrt{2}xy+98y^2$$ some terms cancel out leaving

$$2x^2y^2-14\sqrt{2}xy^2 +196x^2 -196\sqrt{2} xy=4x^2y^2 -28\sqrt{2}xy^2 +98x^2-98\sqrt{2}xy$$ or
$$2x^2y^2-14\sqrt{2}xy^2-98x^2-98\sqrt{2}xy=0$$ or
$$y^2(x-7\sqrt{2}) -49\sqrt{2}y -49x=0$$ giving a solution ##y= \large \frac{-7x}{x-7\sqrt{2}}##

Now set $$ \frac{ \partial f(x,y)}{\partial y}=\frac{1}{2} \left( \frac{2y-\sqrt{2}x}{\sqrt{x^2 -\sqrt{2}xy +y^2}}+ \frac{2y-10}{\sqrt{y^2 -10y+50}}\right)=0$$ giving

$$(2y-\sqrt{2}x)\sqrt{y^2 -10y+50}+(2y-10)\sqrt{x^2 -\sqrt{2}xy +y^2}=0$$or

$$(2y-\sqrt{2}x)\sqrt{y^2 -10y+50}=(-2y+10)\sqrt{x^2 -\sqrt{2}xy +y^2}$$again, squaring both sides

$$(4y^2-4\sqrt{2}xy+2x^2)(y^2 -10y+50)=(4y^2-40y+100)(x^2 -\sqrt{2}xy +y^2)$$ the LHS is
$$4y^4 -4\sqrt{2}xy^3+2x^2y^2-40y^3+40\sqrt{2}xy^2-20x^2y+200y^2-200\sqrt{2}xy+100x^2$$ the RHS is
$$4y^4 -4\sqrt{2}xy^3+4x^2y^2-40y^3+40\sqrt{2}xy^2-40x^2 y+100y^2-100\sqrt{2}xy+100x^2$$ giving
$$2x^2y^2-20x^2y-100y^2-100\sqrt{2}xy=0$$ or
$$y(2x^2-100)=20x^2+100\sqrt{2}x$$ or
$$y= \frac{20x(x+5\sqrt{2})}{2(x^2+50)}= \frac{10x}{x-5\sqrt{2}}$$

Now put the values for ##(x,y)## into the original equation with ##x=\large\frac{35\sqrt{2}}{17}##, ##y=\large\frac{35}{12}##, ##x^2=\large\frac{2450}{289}## and ##y^2=\large\frac{1225}{144}##

$$\sqrt{x^2-7\sqrt{2}x+49}+\sqrt{x^2-\sqrt{2}xy+y^2}+\sqrt{y^2-10y+50}$$is
$$\sqrt{ \frac{2450}{289}-7\sqrt{2}\frac{35\sqrt{2}}{17} +49}+\sqrt{\frac{2450}{289}-\sqrt{2}\frac{35\sqrt{2}}{17}\frac{35}{12}+\frac{1225}{144}}+\sqrt{\frac{1225}{144}-10\frac{35}{12}+50}$$
with
$$\sqrt{ \frac{2450}{289}-7\sqrt{2}\frac{35\sqrt{2}}{17} +49}=\sqrt{\frac{2450}{289} -\frac{8330}{289} +\frac{14161}{289}}= \sqrt{\frac{8281}{289}}=\frac{91}{17}$$and

$$\sqrt{\frac{2450}{289}-\sqrt{2}\frac{35\sqrt{2}}{17}\frac{35}{12}+\frac{1225}{144}}=\sqrt{\frac{2450}{289}-\frac{2450}{204} + \frac{1225}{144}} = \sqrt{\frac{207025}{41616}} = \frac{455}{204}$$ and
$$\sqrt{\frac{1225}{144}-10\frac{35}{12}+50}=\sqrt{\frac{1225}{144}-\frac{4200}{144}+\frac{7200}{144}}=\sqrt{\frac{12625}{144}}= \frac{65}{12}$$thus
$$f_{min}=\frac{91}{17} +\frac{455}{204}+ \frac{65}{12}=\frac{1092}{204}+\frac{455}{204}+\frac{1105}{204}=\frac{2652}{204}=13$$[\spoiler]
Oh thanks for the reminder, I forgot to post my solution :)

I did not use partial derivatives
 
  • Like
Likes   Reactions: bob012345
malawi_glenn said:
Oh thanks for the reminder, I forgot to post my solution :)

I did not use partial derivatives
Ok, so your solution is a different strategy but still lengthy?
 
  • Like
Likes   Reactions: malawi_glenn

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K