MHB How Can You Prove the Existence of a Function in POTW #223?

  • Thread starter Thread starter Ackbach
  • Start date Start date
  • Tags Tags
    2016
Click For Summary
The discussion centers on proving the existence of a one-to-one function from a finite set A to the real numbers R, based on specific conditions for ordered triples of distinct elements. The conditions include symmetry and exclusivity in the set S, as well as a relationship between the presence of certain triples. The problem is derived from the 1996 William Lowell Putnam Mathematical Competition. Despite the complexity, no participants provided answers this week. The solution is credited to Kiran Kedlaya and his associates.
Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
94
Here is this week's POTW:

-----

Let $S$ be the set of ordered triples $(a, b, c)$ of distinct elements of a finite set $A$. Suppose that
  1. $(a,b,c) \in S$ if and only if $(b,c,a) \in S$;
  2. $(a,b,c) \in S$ if and only if $(c,b,a) \not\in S$;
  3. $(a,b,c)$ and $(c,d,a)$ are both in $S$ if and only if $(b,c,d)$ and $(d,a,b)$ are both in $S$.
Prove that there exists a one-to-one function $g$ from $A$ to $R$ such that $g(a) < g(b) < g(c)$ implies $(a,b,c) \in S$. Note: $R$ is the set of real numbers.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Re: Problem Of The Week # 223 - Jul 05, 2016

This was Problem A-4 in the 1996 William Lowell Putnam Mathematical Competition.

No one answered this week's POTW. The solution, attributed to Kiran Kedlaya and his associates, follows:

In fact, we will show that such a function $g$ exists with the
property that $(a,b,c) \in S$ if and only if $g(d) < g(e) < g(f)$ for
some cyclic permutation $(d,e,f)$ of $(a,b,c)$. We proceed by
induction on the number of elements in $A$. If $A =
\{a,b,c\}$ and $(a,b,c) \in S$, then choose $g$ with $g(a) < g(b) <
g(c)$, otherwise choose $g$ with $g(a) > g(b) > g(c)$.

Now let $z$ be an element of $A$ and $B = A - \{z\}$.
Let $a_{1}, \dots, a_{n}$ be the elements of $B$ labeled such that
$g(a_{1}) < g(a_{2}) < \cdots < g(a_{n})$. We claim that there exists
a unique $i \in \{1, \dots, n\}$ such that $(a_{i}, z, a_{i+1})
\in S$, where hereafter $a_{n+k} = a_{k}$.

We show existence first. Suppose no such $i$ exists; then for all
$i,k \in \{1, \dots, n\}$, we have $(a_{i+k}, z, a_{i}) \notin S$.
This holds by property 1 for $k=1$ and by induction on $k$ in
general, noting that
\begin{align*}
(a_{i+k+1}, z, a_{i+k}), &(a_{i+k}, z, a_{i}) \in S \\
&\Rightarrow (a_{i+k}, a_{i+k+1}, z), (z, a_{i}, a_{i+k}) \in S \\
&\Rightarrow (a_{i+k+1},z,a_{i}) \in S.
\end{align*}
Applying this when $k=n$, we get $(a_{i-1}, z, a_{i}) \in S$,
contradicting the fact that $(a_{i}, z, a_{i-1}) \in S$. Hence
existence follows.

Now we show uniqueness. Suppose $(a_{i}, z, a_{i+1}) \in S$; then for
any $j \neq i-1, i, i+1$, we have $(a_{i}, a_{i+1}, a_{j}), (a_{j},
a_{j+1}, a_{i}) \in S$ by the
assumption on $G$. Therefore
\begin{align*}
(a_{i}, z, a_{i+1}), (a_{i+1}, a_{j}, a_{i}) \in S
&\Rightarrow (a_{j}, a_{i}, z) \in S \\
(a_{i}, z, a_{j}), (a_{j}, a_{j+1}, a_{i}) \in S
&\Rightarrow (z, a_{j}, a_{j+1}),
\end{align*}
so $(a_{j}, z, a_{j+1}) \notin S$. The case $j =i+1$ is ruled out by
\[
(a_{i}, z, a_{i+1}), (a_{i+1}, a_{i+2}, a_{i}) \in S \Rightarrow (z,
a_{i+1}, a_{i+2}) \in S
\]
and the case $j=i-1$ is similar.

Finally, we put $g(z)$ in $(g(a_{n}), + \infty)$ if $i = n$, and
$(g(a_{i}), g(a_{i+1}))$ otherwise; an analysis similar to that above
shows that $g$ has the desired property.