MHB How Can You Prove This Trigonometric Identity?

Click For Summary
The discussion focuses on proving the trigonometric identity $(4\cos^2 9^{\circ}-3)(4\cos^2 27^{\circ}-3)=\tan 9^{\circ}$. Participants highlight that familiarity with the triple angle formula for cosine is key to solving the problem efficiently. The problem is considered manageable, with encouragement for those engaging with it. Overall, the conversation emphasizes the importance of understanding trigonometric identities and formulas in solving such challenges. Mastery of these concepts is essential for proving complex trigonometric identities.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $(4\cos^2 9^{\circ}-3)(4\cos^2 27^{\circ}-3)=\tan 9^{\circ}$
 
Mathematics news on Phys.org
anemone said:
Prove that $(4\cos^2 9^{\circ}-3)(4\cos^2 27^{\circ}-3)=\tan 9^{\circ}$

Using the fact that
$$\cos(3x)=4\cos^3x-3\cos x\,\,\,\,(*)$$
LHS can be written as:
$$\frac{\cos 27^{\circ}}{\cos 9^{\circ}}(4\cos^2 27^{\circ}-3)=\frac{4\cos^3 27^{\circ}-3\cos 27^{\circ}}{\cos 9^{\circ}}$$
Again by using (*),
$$\frac{4\cos^3 27^{\circ}-3\cos 27^{\circ}}{\cos 9^{\circ}}=\frac{\cos 81^{\circ}}{\cos 9^{\circ}}=\frac{\sin 9^{\circ}}{\cos 9^{\circ}}=\tan 9^{\circ}$$
 
anemone said:
Prove that $(4\cos^2 9^{\circ}-3)(4\cos^2 27^{\circ}-3)=\tan 9^{\circ}$

we know

$\cos 3x = 4 cos ^3 x - 3 cos x$

so $\frac{\cos 3x}{\cos x} = 4 cos ^2 x - 3$

put $x = 9^{\circ}$ to get $(4\cos^2 9^{\circ}-3)= \cos 27^{\circ}/\cos 9^{\circ}$

put $x = 27^{\circ}$ to get $(4\cos^2 27^{\circ}-3)= \cos 81^{\circ}/\cos 27^{\circ}$

hence $(4\cos^2 9^{\circ}-3)(4\cos^2 27^{\circ}-3)$
=
$\cos 81^{\circ}/\cos 27^{\circ}\cos 27^{\circ}/\cos 9^{\circ}$
=$ \cos 81^{\circ}/\cos 9^{\circ}$
= $ \sin 9^{\circ}/\cos 9^{\circ}$
= $ tan 9^{\circ}$
 
Pranav said:
Using the fact that
$$\cos(3x)=4\cos^3x-3\cos x\,\,\,\,(*)$$
LHS can be written as:
$$\frac{\cos 27^{\circ}}{\cos 9^{\circ}}(4\cos^2 27^{\circ}-3)=\frac{4\cos^3 27^{\circ}-3\cos 27^{\circ}}{\cos 9^{\circ}}$$
Again by using (*),
$$\frac{4\cos^3 27^{\circ}-3\cos 27^{\circ}}{\cos 9^{\circ}}=\frac{\cos 81^{\circ}}{\cos 9^{\circ}}=\frac{\sin 9^{\circ}}{\cos 9^{\circ}}=\tan 9^{\circ}$$

kaliprasad said:
we know

$\cos 3x = 4 cos ^3 x - 3 cos x$

so $\frac{\cos 3x}{\cos x} = 4 cos ^2 x - 3$

put $x = 9^{\circ}$ to get $(4\cos^2 9^{\circ}-3)= \cos 27^{\circ}/\cos 9^{\circ}$

put $x = 27^{\circ}$ to get $(4\cos^2 27^{\circ}-3)= \cos 81^{\circ}/\cos 27^{\circ}$

hence $(4\cos^2 9^{\circ}-3)(4\cos^2 27^{\circ}-3)$
=
$\cos 81^{\circ}/\cos 27^{\circ}\cos 27^{\circ}/\cos 9^{\circ}$
=$ \cos 81^{\circ}/\cos 9^{\circ}$
= $ \sin 9^{\circ}/\cos 9^{\circ}$
= $ tan 9^{\circ}$

Hi Pranav and kaliprasad,:)

Thank you so much for participating in this not very difficult challenge trigonometric problem and well done! Yes, the trick to prove this identity quickly lies with the fact if one is familiar with the triple angle formula for cosine function.(Muscle)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 28 ·
Replies
28
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K