MHB How Can You Solve for $a_n$ in the Sequence Given $2S_n = a_n + \frac{1}{a_n}$?

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Sequence
Click For Summary
The discussion focuses on finding the expression for the sequence {$a_n$} given the equation 2S_n = a_n + 1/a_n, where S_n is the sum of the first n terms of the sequence. Participants confirm the correctness of the solution provided by a user, indicating that the problem has been resolved satisfactorily. The sequence is defined for positive values of a_n, and the goal is to express a_n in terms of n. The conversation emphasizes the importance of understanding the relationship between the terms and their cumulative sum. Overall, the problem was successfully addressed with a clear solution.
Albert1
Messages
1,221
Reaction score
0
A sequence {$a_n$},$S_n=a_1+a_2+-----+a_n$,for each $n\in N, a_n>0$

if $2S_n=a_n+\dfrac {1}{a_n}$

please find $a_n=?$ (express in $n$)
 
Mathematics news on Phys.org
Albert said:
A sequence {$a_n$},$S_n=a_1+a_2+-----+a_n$,for each $n\in N, a_n>0$

if $2S_n=a_n+\dfrac {1}{a_n}$

please find $a_n=?$ (express in $n$)

I claim the sequence is $1,\sqrt2-1,\sqrt3-\sqrt2,\sqrt4-\sqrt3,\dots$ and thus the general term is
$$a_n=\sqrt n-\sqrt{n-1}$$

$$2S_n=a_n+\dfrac{1}{a_n}\implies S_n=\dfrac{a^2_n+1}{2a_n}$$

Proof by induction:

We have
$$1+(\sqrt2-1)+(\sqrt3-\sqrt2)+\dots+\sqrt{n}-\sqrt{n-1}=\sqrt n$$
$$S_{n+1}=\dfrac{(\sqrt{n+1}-\sqrt{n})^2+1}{2(\sqrt{n+1}-\sqrt{n})}$$
$$=\dfrac{n+1-2\sqrt{n+1}\sqrt{n}+n+1}{2(\sqrt{n+1}-\sqrt{n})}$$
$$=\dfrac{2(n+1)-2\sqrt{n+1}\sqrt{n}}{2(\sqrt{n+1}\sqrt{n})}$$
$$=\dfrac{2\sqrt{n+1}(\sqrt{n+1}-\sqrt{n})}{2(\sqrt{n+1}-\sqrt{n})}=\sqrt{n+1}$$

It follows that $a_n=\sqrt{n}-\sqrt{n-1}$.
 
greg1313 said:
I claim the sequence is $1,\sqrt2-1,\sqrt3-\sqrt2,\sqrt4-\sqrt3,\dots$ and thus the general term is
$$a_n=\sqrt n-\sqrt{n-1}$$

$$2S_n=a_n+\dfrac{1}{a_n}\implies S_n=\dfrac{a^2_n+1}{2a_n}$$

Proof by induction:

We have
$$1+(\sqrt2-1)+(\sqrt3-\sqrt2)+\dots+\sqrt{n}-\sqrt{n-1}=\sqrt n$$
$$S_{n+1}=\dfrac{(\sqrt{n+1}-\sqrt{n})^2+1}{2(\sqrt{n+1}-\sqrt{n})}$$
$$=\dfrac{n+1-2\sqrt{n+1}\sqrt{n}+n+1}{2(\sqrt{n+1}-\sqrt{n})}$$
$$=\dfrac{2(n+1)-2\sqrt{n+1}\sqrt{n}}{2(\sqrt{n+1}\sqrt{n})}$$
$$=\dfrac{2\sqrt{n+1}(\sqrt{n+1}-\sqrt{n})}{2(\sqrt{n+1}-\sqrt{n})}=\sqrt{n+1}$$

It follows that $a_n=\sqrt{n}-\sqrt{n-1}$.
thanks greg1313:
very good!your answer is correct
$given: \,\, 2S_n=a_n+\dfrac{1}{a_n}---(1)\\$
$for \,\,n=1\\$
$S_1=a_1=1\\$
$for \,\,n\geq 2\\$
$a_n=S_n-S_{n-1}---(2)\\$
$put \,\, (2)\,\, to \,\,(1)\\$
we have :$S_n^2-S_{n-1}^2=1\,\,\therefore S_n^2=1+n-1=n\\$
$\therefore S_n=\sqrt n$
from (2):$a_n=\sqrt{n}-\sqrt{n-1}$ #
 
Last edited:
Albert said:
thanks greg1313:
very good!your answer is correct
$given: \,\, 2S_n=a_n+\dfrac{1}{a_n}---(1)\\$
$for \,\,n=1\\$
$S_1=a_1=1\\$
$for \,\,n\geq 2\\$
$a_n=S_n-S_{n-1}---(2)\\$
$put \,\, (2)\,\, to \,\,(1)\\$
we have :$S_n^2-S_{n-1}^2=1\,\,\therefore S_n^2=1+n-1=n\\$
$\therefore S_n=\sqrt n$
from (2):$a_n=\sqrt{n}-\sqrt{n-1}$ #

A few points:

Albert, you seem to assume $a_1=1$ in your proof, or at least did not clearly show this to be true. What I would do here is state:

$$2S_1=a_1+\frac{1}{a_1}\tag{1}$$

$$S_1=a_1\tag{2}$$

Subtracting (2) from (1), we obtain:

$$S_1=\frac{1}{a_1}$$

Now, substituting for $S_1$ into (2), we have:

$$\frac{1}{a_1}=a_1\implies a_1^2=1\implies S_1^2=1$$

Now, observing that:

$$S_n-S_{n-1}=a_n$$, we may write:

$$2S_n=S_n-S_{n-1}+\frac{1}{S_n-S_{n-1}}$$

from which we obtain:

$$S_n^2-S_{n-1}^2=1$$

And from this, we may write:

$$S_n^2-S_1^2=\sum_{k=2}^n\left(S_{k}^2-S_{k-1}^2\right)=\sum_{k=2}^n\left(1\right)=n-1$$

And from this we get:

$$S_n^2=n$$

Given $0<a_1$, we find:

$$S_n=\sqrt{n}$$

Hence:

$$a_n=\sqrt{n}-\sqrt{n-1}$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
Replies
20
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K