MHB How Can You Solve for $a_n$ in the Sequence Given $2S_n = a_n + \frac{1}{a_n}$?

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Sequence
Click For Summary
The discussion focuses on finding the expression for the sequence {$a_n$} given the equation 2S_n = a_n + 1/a_n, where S_n is the sum of the first n terms of the sequence. Participants confirm the correctness of the solution provided by a user, indicating that the problem has been resolved satisfactorily. The sequence is defined for positive values of a_n, and the goal is to express a_n in terms of n. The conversation emphasizes the importance of understanding the relationship between the terms and their cumulative sum. Overall, the problem was successfully addressed with a clear solution.
Albert1
Messages
1,221
Reaction score
0
A sequence {$a_n$},$S_n=a_1+a_2+-----+a_n$,for each $n\in N, a_n>0$

if $2S_n=a_n+\dfrac {1}{a_n}$

please find $a_n=?$ (express in $n$)
 
Mathematics news on Phys.org
Albert said:
A sequence {$a_n$},$S_n=a_1+a_2+-----+a_n$,for each $n\in N, a_n>0$

if $2S_n=a_n+\dfrac {1}{a_n}$

please find $a_n=?$ (express in $n$)

I claim the sequence is $1,\sqrt2-1,\sqrt3-\sqrt2,\sqrt4-\sqrt3,\dots$ and thus the general term is
$$a_n=\sqrt n-\sqrt{n-1}$$

$$2S_n=a_n+\dfrac{1}{a_n}\implies S_n=\dfrac{a^2_n+1}{2a_n}$$

Proof by induction:

We have
$$1+(\sqrt2-1)+(\sqrt3-\sqrt2)+\dots+\sqrt{n}-\sqrt{n-1}=\sqrt n$$
$$S_{n+1}=\dfrac{(\sqrt{n+1}-\sqrt{n})^2+1}{2(\sqrt{n+1}-\sqrt{n})}$$
$$=\dfrac{n+1-2\sqrt{n+1}\sqrt{n}+n+1}{2(\sqrt{n+1}-\sqrt{n})}$$
$$=\dfrac{2(n+1)-2\sqrt{n+1}\sqrt{n}}{2(\sqrt{n+1}\sqrt{n})}$$
$$=\dfrac{2\sqrt{n+1}(\sqrt{n+1}-\sqrt{n})}{2(\sqrt{n+1}-\sqrt{n})}=\sqrt{n+1}$$

It follows that $a_n=\sqrt{n}-\sqrt{n-1}$.
 
greg1313 said:
I claim the sequence is $1,\sqrt2-1,\sqrt3-\sqrt2,\sqrt4-\sqrt3,\dots$ and thus the general term is
$$a_n=\sqrt n-\sqrt{n-1}$$

$$2S_n=a_n+\dfrac{1}{a_n}\implies S_n=\dfrac{a^2_n+1}{2a_n}$$

Proof by induction:

We have
$$1+(\sqrt2-1)+(\sqrt3-\sqrt2)+\dots+\sqrt{n}-\sqrt{n-1}=\sqrt n$$
$$S_{n+1}=\dfrac{(\sqrt{n+1}-\sqrt{n})^2+1}{2(\sqrt{n+1}-\sqrt{n})}$$
$$=\dfrac{n+1-2\sqrt{n+1}\sqrt{n}+n+1}{2(\sqrt{n+1}-\sqrt{n})}$$
$$=\dfrac{2(n+1)-2\sqrt{n+1}\sqrt{n}}{2(\sqrt{n+1}\sqrt{n})}$$
$$=\dfrac{2\sqrt{n+1}(\sqrt{n+1}-\sqrt{n})}{2(\sqrt{n+1}-\sqrt{n})}=\sqrt{n+1}$$

It follows that $a_n=\sqrt{n}-\sqrt{n-1}$.
thanks greg1313:
very good!your answer is correct
$given: \,\, 2S_n=a_n+\dfrac{1}{a_n}---(1)\\$
$for \,\,n=1\\$
$S_1=a_1=1\\$
$for \,\,n\geq 2\\$
$a_n=S_n-S_{n-1}---(2)\\$
$put \,\, (2)\,\, to \,\,(1)\\$
we have :$S_n^2-S_{n-1}^2=1\,\,\therefore S_n^2=1+n-1=n\\$
$\therefore S_n=\sqrt n$
from (2):$a_n=\sqrt{n}-\sqrt{n-1}$ #
 
Last edited:
Albert said:
thanks greg1313:
very good!your answer is correct
$given: \,\, 2S_n=a_n+\dfrac{1}{a_n}---(1)\\$
$for \,\,n=1\\$
$S_1=a_1=1\\$
$for \,\,n\geq 2\\$
$a_n=S_n-S_{n-1}---(2)\\$
$put \,\, (2)\,\, to \,\,(1)\\$
we have :$S_n^2-S_{n-1}^2=1\,\,\therefore S_n^2=1+n-1=n\\$
$\therefore S_n=\sqrt n$
from (2):$a_n=\sqrt{n}-\sqrt{n-1}$ #

A few points:

Albert, you seem to assume $a_1=1$ in your proof, or at least did not clearly show this to be true. What I would do here is state:

$$2S_1=a_1+\frac{1}{a_1}\tag{1}$$

$$S_1=a_1\tag{2}$$

Subtracting (2) from (1), we obtain:

$$S_1=\frac{1}{a_1}$$

Now, substituting for $S_1$ into (2), we have:

$$\frac{1}{a_1}=a_1\implies a_1^2=1\implies S_1^2=1$$

Now, observing that:

$$S_n-S_{n-1}=a_n$$, we may write:

$$2S_n=S_n-S_{n-1}+\frac{1}{S_n-S_{n-1}}$$

from which we obtain:

$$S_n^2-S_{n-1}^2=1$$

And from this, we may write:

$$S_n^2-S_1^2=\sum_{k=2}^n\left(S_{k}^2-S_{k-1}^2\right)=\sum_{k=2}^n\left(1\right)=n-1$$

And from this we get:

$$S_n^2=n$$

Given $0<a_1$, we find:

$$S_n=\sqrt{n}$$

Hence:

$$a_n=\sqrt{n}-\sqrt{n-1}$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K