MHB How Can You Solve for $a_n$ in the Sequence Given $2S_n = a_n + \frac{1}{a_n}$?

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Sequence
AI Thread Summary
The discussion focuses on finding the expression for the sequence {$a_n$} given the equation 2S_n = a_n + 1/a_n, where S_n is the sum of the first n terms of the sequence. Participants confirm the correctness of the solution provided by a user, indicating that the problem has been resolved satisfactorily. The sequence is defined for positive values of a_n, and the goal is to express a_n in terms of n. The conversation emphasizes the importance of understanding the relationship between the terms and their cumulative sum. Overall, the problem was successfully addressed with a clear solution.
Albert1
Messages
1,221
Reaction score
0
A sequence {$a_n$},$S_n=a_1+a_2+-----+a_n$,for each $n\in N, a_n>0$

if $2S_n=a_n+\dfrac {1}{a_n}$

please find $a_n=?$ (express in $n$)
 
Mathematics news on Phys.org
Albert said:
A sequence {$a_n$},$S_n=a_1+a_2+-----+a_n$,for each $n\in N, a_n>0$

if $2S_n=a_n+\dfrac {1}{a_n}$

please find $a_n=?$ (express in $n$)

I claim the sequence is $1,\sqrt2-1,\sqrt3-\sqrt2,\sqrt4-\sqrt3,\dots$ and thus the general term is
$$a_n=\sqrt n-\sqrt{n-1}$$

$$2S_n=a_n+\dfrac{1}{a_n}\implies S_n=\dfrac{a^2_n+1}{2a_n}$$

Proof by induction:

We have
$$1+(\sqrt2-1)+(\sqrt3-\sqrt2)+\dots+\sqrt{n}-\sqrt{n-1}=\sqrt n$$
$$S_{n+1}=\dfrac{(\sqrt{n+1}-\sqrt{n})^2+1}{2(\sqrt{n+1}-\sqrt{n})}$$
$$=\dfrac{n+1-2\sqrt{n+1}\sqrt{n}+n+1}{2(\sqrt{n+1}-\sqrt{n})}$$
$$=\dfrac{2(n+1)-2\sqrt{n+1}\sqrt{n}}{2(\sqrt{n+1}\sqrt{n})}$$
$$=\dfrac{2\sqrt{n+1}(\sqrt{n+1}-\sqrt{n})}{2(\sqrt{n+1}-\sqrt{n})}=\sqrt{n+1}$$

It follows that $a_n=\sqrt{n}-\sqrt{n-1}$.
 
greg1313 said:
I claim the sequence is $1,\sqrt2-1,\sqrt3-\sqrt2,\sqrt4-\sqrt3,\dots$ and thus the general term is
$$a_n=\sqrt n-\sqrt{n-1}$$

$$2S_n=a_n+\dfrac{1}{a_n}\implies S_n=\dfrac{a^2_n+1}{2a_n}$$

Proof by induction:

We have
$$1+(\sqrt2-1)+(\sqrt3-\sqrt2)+\dots+\sqrt{n}-\sqrt{n-1}=\sqrt n$$
$$S_{n+1}=\dfrac{(\sqrt{n+1}-\sqrt{n})^2+1}{2(\sqrt{n+1}-\sqrt{n})}$$
$$=\dfrac{n+1-2\sqrt{n+1}\sqrt{n}+n+1}{2(\sqrt{n+1}-\sqrt{n})}$$
$$=\dfrac{2(n+1)-2\sqrt{n+1}\sqrt{n}}{2(\sqrt{n+1}\sqrt{n})}$$
$$=\dfrac{2\sqrt{n+1}(\sqrt{n+1}-\sqrt{n})}{2(\sqrt{n+1}-\sqrt{n})}=\sqrt{n+1}$$

It follows that $a_n=\sqrt{n}-\sqrt{n-1}$.
thanks greg1313:
very good!your answer is correct
$given: \,\, 2S_n=a_n+\dfrac{1}{a_n}---(1)\\$
$for \,\,n=1\\$
$S_1=a_1=1\\$
$for \,\,n\geq 2\\$
$a_n=S_n-S_{n-1}---(2)\\$
$put \,\, (2)\,\, to \,\,(1)\\$
we have :$S_n^2-S_{n-1}^2=1\,\,\therefore S_n^2=1+n-1=n\\$
$\therefore S_n=\sqrt n$
from (2):$a_n=\sqrt{n}-\sqrt{n-1}$ #
 
Last edited:
Albert said:
thanks greg1313:
very good!your answer is correct
$given: \,\, 2S_n=a_n+\dfrac{1}{a_n}---(1)\\$
$for \,\,n=1\\$
$S_1=a_1=1\\$
$for \,\,n\geq 2\\$
$a_n=S_n-S_{n-1}---(2)\\$
$put \,\, (2)\,\, to \,\,(1)\\$
we have :$S_n^2-S_{n-1}^2=1\,\,\therefore S_n^2=1+n-1=n\\$
$\therefore S_n=\sqrt n$
from (2):$a_n=\sqrt{n}-\sqrt{n-1}$ #

A few points:

Albert, you seem to assume $a_1=1$ in your proof, or at least did not clearly show this to be true. What I would do here is state:

$$2S_1=a_1+\frac{1}{a_1}\tag{1}$$

$$S_1=a_1\tag{2}$$

Subtracting (2) from (1), we obtain:

$$S_1=\frac{1}{a_1}$$

Now, substituting for $S_1$ into (2), we have:

$$\frac{1}{a_1}=a_1\implies a_1^2=1\implies S_1^2=1$$

Now, observing that:

$$S_n-S_{n-1}=a_n$$, we may write:

$$2S_n=S_n-S_{n-1}+\frac{1}{S_n-S_{n-1}}$$

from which we obtain:

$$S_n^2-S_{n-1}^2=1$$

And from this, we may write:

$$S_n^2-S_1^2=\sum_{k=2}^n\left(S_{k}^2-S_{k-1}^2\right)=\sum_{k=2}^n\left(1\right)=n-1$$

And from this we get:

$$S_n^2=n$$

Given $0<a_1$, we find:

$$S_n=\sqrt{n}$$

Hence:

$$a_n=\sqrt{n}-\sqrt{n-1}$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Replies
1
Views
1K
Replies
2
Views
1K
Replies
2
Views
1K
Replies
1
Views
1K
Replies
4
Views
3K
Replies
8
Views
2K
Replies
2
Views
1K
Back
Top