How Do Complex Numbers Relate to the Unit Disk and Their Properties?

  • Context: MHB 
  • Thread starter Thread starter Markov2
  • Start date Start date
  • Tags Tags
    Complex
Click For Summary

Discussion Overview

The discussion revolves around the properties of complex numbers in relation to the unit disk, denoted as $D=\{z\in\mathbb C:|z|<1\}$. Participants present problems and their attempts to solve them, focusing on various mathematical properties and relationships involving complex numbers, particularly on the boundary of the unit disk.

Discussion Character

  • Mathematical reasoning
  • Exploratory
  • Homework-related

Main Points Raised

  • Participants propose showing that if $z+\dfrac1z$ is a real number, then $\text{Im}(z)=0$ or $z\in\partial D$.
  • There is a claim that for $z,w\in\mathbb C$ with $z\in\partial D$, it should be shown that $\left| {\dfrac{{z + w}}{{\overline z w + 1}}} \right| = 1$.
  • One participant suggests proving that if $z_1,z_2,z_3\in\partial D$ and $z_1+z_2+z_3=0$, then $\dfrac{1}{{{z_1}}} + \dfrac{1}{{{z_2}}} + \dfrac{1}{{{z_3}}} = 0$.
  • Another point raised involves proving that $A = {\left( {\dfrac{{ - 1 + \sqrt 3 i}}{2}} \right)^n} + {\left( {\dfrac{{ - 1 - \sqrt 3 i}}{2}} \right)^n}$ results in specific values depending on whether $n$ is a multiple of 3 or not.
  • Some participants express uncertainty about the best methods to approach the problems, particularly regarding substitutions and algebraic manipulations.
  • One participant suggests finding a polynomial related to the roots of $cos(\frac{2n\pi}{3})$ to aid in solving the fourth problem.
  • Hints are provided regarding the geometric interpretation of the points $z_1, z_2, z_3$ as vertices of an equilateral triangle.

Areas of Agreement / Disagreement

Participants express varying levels of confidence in their approaches, and there is no consensus on the best methods to solve the problems presented. Some participants seek clarification on definitions and methods, indicating ongoing uncertainty.

Contextual Notes

There are unresolved mathematical steps and assumptions regarding the properties of complex numbers and their relationships to the unit disk. The discussion includes various approaches that may depend on specific definitions or interpretations.

Markov2
Messages
149
Reaction score
0
I'll be posting problems and my ideas to solve them, probably if no idea exists, I'll need more help please!

Denote $D=\{z\in\mathbb C:|z|<1\}$

1) Show that if $z+\dfrac1z$ is a real number, then $\text{Im}(z)=0$ or $z\in\partial D.$

2) Let $z,w\in\mathbb C$ so that $z\in\partial D.$ Show that $\left| {\dfrac{{z + w}}{{\overline z w + 1}}} \right| = 1.$

3) Let $z_1,z_2,z_3\in\mathbb C$ so that $z_1,z_2,z_3\in\partial D$ and $z_1+z_2+z_3=0.$ Prove that $\dfrac{1}{{{z_1}}} + \dfrac{1}{{{z_2}}} + \dfrac{1}{{{z_3}}} = 0.$

4) Let $A = {\left( {\dfrac{{ - 1 + \sqrt 3 i}}{2}} \right)^n} + {\left( {\dfrac{{ - 1 - \sqrt 3 i}}{2}} \right)^n}.$ Prove that $A=\left\{\begin{array}{rl}2,&\text{if }n\text{ is multiple of }3.\\-1,&\text{Otherwise.}\end{array}\right.$

Attempts:

1) if $z+\dfrac1z$ is a real number, then $z + \dfrac{1}{z} = \overline {z + \dfrac{1}{z}} ,$ does this hold? Would it work if I do $z=x+iy$ ? But I don't see how to show that $z\in\partial D.$

2) It's simple algebra, I just put $z=a+bi$ and $w=c+di$ and show the modulus is 1.

3) I don't know if there's a faster way here, I mean by not setting $z_1=a+bi,$ and so on, is there a faster way to proceed?

4) I have $A = 2\cos \left( {\dfrac{{2\pi n}}{3}} \right)$ so if $n$ is a multiple of 3 the result follows, but I don't see how to conclude the second part.
 
Physics news on Phys.org
Markov said:
I'll be posting problems and my ideas to solve them, probably if no idea exists, I'll need more help please!

Denote $D=\{z\in\mathbb C:|z|<1\}$

1) Show that if $z+\dfrac1z$ is a real number, then $\text{Im}(z)=0$ or $z\in\partial D.$

2) Let $z,w\in\mathbb C$ so that $z\in\partial D.$ Show that $\left| {\dfrac{{z + w}}{{\overline z w + 1}}} \right| = 1.$

3) Let $z_1,z_2,z_3\in\mathbb C$ so that $z_1,z_2,z_3\in\partial D$ and $z_1+z_2+z_3=0.$ Prove that $\dfrac{1}{{{z_1}}} + \dfrac{1}{{{z_2}}} + \dfrac{1}{{{z_3}}} = 0.$

4) Let $A = {\left( {\dfrac{{ - 1 + \sqrt 3 i}}{2}} \right)^n} + {\left( {\dfrac{{ - 1 - \sqrt 3 i}}{2}} \right)^n}.$ Prove that $A=\left\{\begin{array}{rl}2,&\text{if }n\text{ is multiple of }3.\\-1,&\text{Otherwise.}\end{array}\right.$

Attempts:

1) if $z+\dfrac1z$ is a real number, then $z + \dfrac{1}{z} = \overline {z + \dfrac{1}{z}} ,$ does this hold? Would it work if I do $z=x+iy$ ? But I don't see how to show that $z\in\partial D.$

2) It's simple algebra, I just put $z=a+bi$ and $w=c+di$ and show the modulus is 1.

3) I don't know if there's a faster way here, I mean by not setting $z_1=a+bi,$ and so on, is there a faster way to proceed?

4) I have $A = 2\cos \left( {\dfrac{{2\pi n}}{3}} \right)$ so if $n$ is a multiple of 3 the result follows, but I don't see how to conclude the second part.

What are you using $\partial D$ to represent?
 
Mmmm, I think it is for $|z|=1,$ does make sense?
 
Well for 1. I think it would be easiest to substitute $ z = x + iy$ and see what happens...
 
Can anybody check my work for 2), 3) and 4) please?
 
4.

Perhaps we should find a Polynomial with roots $cos(\frac{2n\pi}{3})$

f(x)=x^4-\frac{5}{4}x^2+\frac{1}{4}If we factorize it, we will get:

$(x-\frac{1}{2})(x+\frac{1}{2})(x-1)(x+1)$

You can prove that, when 3|n then A=1 or -1 and the rest is follows, I think... hmm!

---------- Post added at 10:29 AM ---------- Previous post was at 09:56 AM ----------

3)

A huge hint:

$z_1,z_2,z_3$ are points of equilateral triangle(...that question from other post).

---------- Post added at 11:02 AM ---------- Previous post was at 10:29 AM ----------

Some better solution for 4:

Put n=3k+1 and n=3k+2 and see what happens!
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
2K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K