How Do Frenet Equations Relate Torsion to Time Derivatives of Position?

  • Context: MHB 
  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Torsion
Click For Summary
SUMMARY

The discussion focuses on deriving an expression for torsion using the Frenet equations, specifically relating it to time derivatives of the position vector. The key equations presented include the Frenet equations and the torsion formula: τ = (𝑟̇ × 𝑟̈ ⋅ 𝑟̈) / |𝑟̇ × 𝑟̈|². Participants emphasize the importance of correctly applying the Frenet equations and suggest using dot products to isolate torsion. The final expression for torsion is confirmed as τ = - (𝑟̈ ⋅ (𝑟̇ × 𝑟̇̇̇)) / |𝑟̇ × 𝑟̈|², highlighting the relationship between torsion and the derivatives of the position vector.

PREREQUISITES
  • Understanding of Frenet equations and their components: tangent vector (𝑢), normal vector (𝑛), and binormal vector (𝑏).
  • Knowledge of vector calculus, particularly cross products and dot products.
  • Familiarity with time derivatives in the context of motion, specifically first and second derivatives of position vectors.
  • Basic understanding of curvature and torsion in differential geometry.
NEXT STEPS
  • Study the derivation of the Frenet equations in detail to understand their application in 3D space.
  • Learn about the geometric interpretation of torsion and curvature in the context of space curves.
  • Explore advanced vector calculus techniques, including the use of derivatives in physics and engineering.
  • Investigate applications of torsion in real-world scenarios, such as robotics and computer graphics.
USEFUL FOR

Mathematicians, physicists, engineers, and students studying differential geometry or kinematics who seek to deepen their understanding of the relationship between torsion and time derivatives of position vectors.

Dustinsfl
Messages
2,217
Reaction score
5
Using Frenet equations, find an expression for the torsion in terms of time derivatives of the position vector.

The Frenet Equations are
\begin{align*}
\frac{d\hat{\mathbf{u}}}{ds} &= \frac{1}{\rho}\hat{\mathbf{n}}\\
\frac{d\hat{\mathbf{b}}}{ds} &= -\frac{1}{\tau}\hat{\mathbf{n}}\\
\frac{d\hat{\mathbf{n}}}{ds} &= \frac{1}{\tau}\hat{\mathbf{b}} - \frac{1}{\rho}\hat{\mathbf{u}}
\end{align*}

The torsion in terms of time derivatives is
\begin{align*}
\tau &= \frac{\dot{\mathbf{r}}\times \ddot{\mathbf{r}}\cdot\ddot{\mathbf{r}}}
{\lvert\dot{\mathbf{r}}\times \ddot{\mathbf{r}}\rvert^2}
\end{align*}

I am not sure how to go from the equations to answer though.
 
Physics news on Phys.org
Couple of comments:

1. It seems to me that some authors define
$$\frac{d \mathbf{b}}{ds}=- \tau \hat{\mathbf{n}}.$$

2. In either case, you can take this equation, and dot both sides into $\hat{\mathbf{n}}$ to solve for $\tau$. Then plug in from there.
 
Ackbach said:
Couple of comments:

1. It seems to me that some authors define
$$\frac{d \mathbf{b}}{ds}=- \tau \hat{\mathbf{n}}.$$

2. In either case, you can take this equation, and dot both sides into $\hat{\mathbf{n}}$ to solve for $\tau$. Then plug in from there.

So \(\hat{\mathbf{n}}\cdot\frac{d\hat{\mathbf{b}}}{ds} = \hat{\mathbf{n}}\cdot \left(\frac{d\hat{\mathbf{u}}}{ds} \times\hat{\mathbf{n}} + \hat{\mathbf{u}}\times \frac{d\hat{\mathbf{n}}}{ds}\right) = -\frac{1}{\tau}\), and since \(\frac{d\hat{\mathbf{u}}}{ds} = \frac{1}{\rho}\hat{\mathbf{n}}\), so the first term is zero due to \(\frac{1}{\rho} \hat{\mathbf{n}}\times \hat{\mathbf{n}} = 0\).

Then we are left with
\[
\hat{\mathbf{n}}\cdot \hat{\mathbf{u}}\times \frac{d\hat{\mathbf{n}}}{ds} = -\frac{1}{\tau}
\]

I am not sure how I am going to recover the time derivatives of \(r\) from the above expression.

I suppose I am making some progress now:

Torsion is defined as
\(-\frac{1}{\tau}\hat{\mathbf{n}} = \frac{d\hat{\mathbf{b}}}{ds}\).
Let's dot both side by \(\hat{\mathbf{n}}\).
\begin{align}
\frac{1}{\tau} &= -\hat{\mathbf{n}}\cdot \frac{d\hat{\mathbf{b}}}{ds}\\
&= -\rho\frac{d^2\mathbf{r}}{ds^2}\cdot \left(\hat{\mathbf{u}}\times
\rho\frac{d\hat{\mathbf{u}}} {ds}\right)
\end{align}
Now let's write \(\frac{d^2\mathbf{r}} {ds^2}\) as
\begin{align}
\frac{d^2\mathbf{r}}{ds^2} &= \frac{d^2\mathbf{r}} {dt^2}
\left(\frac{dt} {ds}\right)^2\\
&= \frac{1} {v^2}\ddot{\mathbf{r}}
\end{align}
and substitute back into equation above.
\begin{align}
&= -\frac{\rho^2} {v^2}\ddot{\mathbf{r}} \cdot \left(\frac{\dot{\mathbf{r}}}{v}\times
\frac{d\hat{\mathbf{u}}} {ds}\right)\\
&= ?\\
&= -\ddot{\mathbf{r}} \rho\cdot \left(\dot{\mathbf{r}}
\times\rho \ddot{\mathbf{r}}\right)_t\\
&= -\ddot{\mathbf{r}}\rho \cdot\left(\dot{\mathbf{r}}
\times\rho \dddot{\mathbf{r}}\right)\\
&= \frac{(\dot{\mathbf{r}} \times\ddot{\mathbf{r}}) \cdot
\dddot{\mathbf{r}}}
{\lvert \dot{\mathbf{r}} \times\ddot{\mathbf{r}} \rvert^2}
\end{align}

What is the ? step?
 
Last edited:

Similar threads

  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
999
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K