MHB How Do I Derive the Distribution of 2θΣx_i for Independent Random Variables?

Click For Summary
The discussion focuses on deriving the distribution of 2θΣx_i for independent random variables, specifically showing that 2θX follows a chi-squared distribution with 1 degree of freedom. The probability density function (pdf) for Y=2θX is confirmed to be that of a chi-squared distribution. It is established that for n independent random variables X_i with the same pdf, 2θΣx_i will have a chi-squared distribution with n degrees of freedom. The moment-generating function is suggested as an effective method for determining the distribution of the sum of these independent variables. The conversation emphasizes the utility of the moment-generating function in solving the problem.
SupLem
Messages
3
Reaction score
0
We have a r.v. X with p.d.f. = sqrt(θ/πx)*exp(-xθ) , x>0 and θ a positive parameter.
We are required to show that 2 θX has a x^2 distribution with 1 d.f. and deduce that, if x_1,……,x_n are independent r.v. with this p.d.f., then 2θ∑_(i=1)^n▒x_ι has a chi-squared distribution with n degrees of freedom.
Using transformation (y=2θΧ) I found the pdf of y=1/sqrt (2π) *y^(-1/2)*e^(-y/2). How do I find the distribution of 2θ∑_(i=1)^n▒x_ι ? Do I need to find the likelihood function (which contains ∑_(i=1)^n▒x_ι ) first ? How do I recognise the d.f. of this distribution (Is it n because it involves x_1,……,x_n,i.e. n r.v.?

(since i couldn't get the graphics right above, I am also adding a screenshot of my word document in order to view). Thanks!View attachment 3491
 

Attachments

  • Capture_8_Nov.JPG
    Capture_8_Nov.JPG
    56.8 KB · Views: 105
Physics news on Phys.org
As you've found for the pdf $f_Y$ of the r.v $Y=2\theta X$:
$$f_Y(y) = \frac{1}{\sqrt{2\pi}} y^{-\frac{1}{2}} e^{-\frac{y}{2}}$$
which is indeed the pdf of the $\chi^2$-distribution with 1 degree of freedom. Next, we have given that $X_1,\ldots,X_n$ are independen r.v's with the same pdf as $X$.

First note that $2\theta X_i$ for $i=1,\ldots,n$ has the same distribution as $Y$, in other words to solve the question you have to find the distribution of $n$ independent r.v's $X_i$ with $X_i \sim \chi^2(1)$.

Do you need to solve this with the transformation theorem? Because using the moment-generating function would lead easily to a solution (because of the independency).
 
Thank you very much for your response. Could you, please, elaborate, on how using the moment generating function would help us in this respect ( i.e. finding the 2θΣx(i=1 to n) distribution?
 
SupLem said:
Thank you very much for your response. Could you, please, elaborate, on how using the moment generating function would help us in this respect ( i.e. finding the 2θΣx(i=1 to n) distribution?

It satisfies to use the moment generating function as it determines the distribution completely.

Denote the moment generating function of $2\theta X_i \sim \chi^2(1)$ as $M_{2\theta X_i}(t)$ which is known for $i=1,\ldots,n$. Due to the independency we have
$$M_ {2\theta \sum_{i=1}^{n} X_i}(t) = \prod_{i=1}^{n} M_{2\theta X_i}(t)$$
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...

Similar threads