MHB How do I factor a binomial with a coefficient of 4?

  • Thread starter Thread starter slowle4rner
  • Start date Start date
  • Tags Tags
    Binomial Factoring
AI Thread Summary
To factor the binomial 4y^3 + 4, first factor out the common coefficient of 4, resulting in 4(y^3 + 1). The expression y^3 + 1 can be further factored using the sum of cubes formula, yielding 4(y + 1)(y^2 - y + 1). Although the coefficient 4 is not a perfect cube, it can remain factored out without affecting the overall expression. The final, most factored form is 4(y + 1)(y^2 - y + 1), which is the preferred answer for clarity and completeness.
slowle4rner
Messages
2
Reaction score
0
I'm having trouble factoring the following binomial... can someone try to point me in the right direction please?

4y^3+4

It has been 7 years since I took algebra and I am trying to get my review done. This one just does not make sense to me right now...

Thanks!
 
Mathematics news on Phys.org
First factor the 4 out, to get:

$$4y^3+4=4\left(y^3+1 \right)=4\left(y^3+1^3 \right)$$

Now apply the sum of cubes formula:

$$a^3+b^3=(a+b)\left(a^2-ab+b^2 \right)$$

What do you get?
 
So...A^3+b^3 = (a+b)(a^2-ab+b^2)

4y^3+4 = 4(y^3+1) = 4(y^3+1^3) = 4(y+1)(y^2-y+1)

That's basically what I came up with. I guess I am confused because I 4 is not a perfect cube and I didn't realize you could factor out the 4 and work the problem from there. But I suppose this makes sense assuming that I can multiply in the four and then multiply (4y+4)(y^2-y+1) or multiply 4(y+1)(y^2-y+1) and distribute the 4.

Would I be correct to presume that 4(y+1)(y^2-y+1) is the most factored and appropriate answer? That would seem to make sense to me...

Thanks for the help. I wasn't seeing it. Gratitude.
 
slowle4rner said:
So...[math]a^3+b^3 = (a+b)(a^2-ab+b^2)[/math]

[math]4y^3+4 = 4(y^3+1) = 4(y^3+1^3) = 4(y+1)(y^2-y+1)[/math]

That's basically what I came up with. I guess I am confused because I 4 is not a perfect cube and I didn't realize you could factor out the 4 and work the problem from there. But I suppose this makes sense assuming that I can multiply in the four and then multiply $$(4y+4)(y^2-y+1)$$ or multiply $$4(y+1)(y^2-y+1)$$ and distribute the 4.

The 4 is a bit of a red herring because, as you said, it's not a perfect cube but you can leave that alone out the front. You could say $$(4y+4)(y^2-y+1)$$ (as well as $$(y+1)(4y^2-4y+4)$$) but it's good form to leave it fully factored which means not distributing the four. If you ever do exams they usually want it fully factored.

Would I be correct to presume that 4(y+1)(y^2-y+1) is the most factored and appropriate answer? That would seem to make sense to me...

Thanks for the help. I wasn't seeing it. Gratitude.

Yes, that is the correct answer.
 
Even if you were not able to factor that "4" out, it just a number! If it had been, say, x^3+ 4 you could write it as x^3+(\sqrt[3]{4})^3 and use that same fornula.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
8
Views
5K
Replies
15
Views
4K
Replies
3
Views
3K
Replies
6
Views
2K
Replies
2
Views
1K
Replies
4
Views
2K
Back
Top