How do I find the work done for a 100 N downward force?

AI Thread Summary
To find the work done by a 100 N downward force, the equation W = F × d × cos(θ) is used, where θ is the angle between the force and displacement. For a force acting downward while the displacement is up the slope, the angle is 180 degrees, making cos(θ) negative. The work done is calculated as W = 100 N × 0.5 m × cos(180°), resulting in -50 Nm. Decomposing forces into their components relative to the slope is essential for accurate calculations of work done by each force.
haha0p1
Messages
46
Reaction score
9
Homework Statement
The figure shows the forces acting on a box that is being pushed up a slope. Calculate the work done by each force if the box moves 0.50m up the slope.
Relevant Equations
Work done= Force×Direction of force
I have found the work done for 100 N, 70 N and 30 N force, but I don't know how to find work for 100 N force that is acting downwards.
Force 70N:
W=F×d = 70 ×0=0 Nm (Force is perpendicular to the distance moved)
100 N force:
W=F×d=100×0.5=50 Nm
30N force:
30×-.5= -15Nm.
Please check whether these answers are right and also tell how to find the work done for 100 N force acting downwards.
Screenshot_20230101-123806.png
 
Physics news on Phys.org
haha0p1 said:
Homework Statement:: The figure shows the forces acting on a box that is being pushed up a slope. Calculate the work done by each force if the box moves 0.50m up the slope.
Relevant Equations:: Work done= Force×Direction of force

I have found the work done for 100 N, 70 N and 30 N force, but I don't know how to find work for 100 N force that is acting downwards.
Force 70N:
W=F×d = 70 ×0=0 Nm (Force is perpendicular to the distance moved)
100 N force:
W=F×d=100×0.5=50 Nm
30N force:
30×-.5= -15Nm.
Please check whether these answers are right and also tell how to find the work done for 100 N force acting downwards. View attachment 319614
So far so good, but I see a hint of why you are having difficulties in your Relevant Equations.

The equation for the work done by a force is ##W = \textbf{F} \cdot \textbf{d}## where ##\textbf{d}## is the displacement. Using the definition of the dot product we get ##W = \textbf{F} \cdot \textbf{d} = F d ~ cos( \theta )## where ##\theta## is the (smaller) angle formed when you put the force and displacement tail to tail.

See what you can do with this. (And make sure you know how to do the other three forces this way as well.)

-Dan
 
The displacement is tangential to the slope. The best approach is to decompose each force into its components tangential to and normal to the slope. The work done is then the product of the tangential component times the displacement.

For the first three forces, this is simple, as these forces are either normal to or tangential to the slope.

You need to decompose the ##100 \ N## force of gravity into the relevant components.
 
  • Like
Likes topsquark and haha0p1
Hello. Thanks for replying. I used the equation FdCostheta and found the correct answer. I also used the equation for my other three forces and found the required answers aswell.
 
haha0p1 said:
Hello. Thanks for replying. I used the equation FdCostheta and found the correct answer. I also used the equation for my other three forces and found the required answers aswell.
The work done can be defined as the dot product of the force and dislacement vectors:
$$W = \vec F \cdot \vec s = |\vec F||\vec s| \cos \theta = Fs \cos \theta$$Note that ##F \cos \theta## is the component of the force in the direction of the displacement. And ##s## is the magnitude of th displacement.
 
  • Like
Likes haha0p1 and topsquark
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top