How Do I Simplify Fractions Using Surds in the Summation Formula?

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Fractions Simplify
Click For Summary
SUMMARY

The discussion focuses on simplifying fractions using surds within the context of the summation formula for the sequence defined by \( a_n = \left(\frac{1}{\sqrt{n}+\sqrt{n-1}}\right) \times \left(\frac{1}{\sqrt{n+1}+\sqrt{n-1}}\right) \times \left(\frac{1}{\sqrt{n+1}+\sqrt{n}}\right) \). The participants derive that \( S_{2012} \) can be computed using a telescoping series approach, leading to the expression \( S_{2012} = \frac{1}{2} - \frac{1}{2}(\sqrt{2013} - \sqrt{2012}) \). A correction was made regarding a missing factor of \( \frac{1}{2} \) in the final step of the calculation.

PREREQUISITES
  • Understanding of telescoping series
  • Familiarity with rationalizing denominators
  • Knowledge of surds and their properties
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the properties of telescoping series in calculus
  • Learn techniques for rationalizing complex fractions
  • Explore advanced topics in sequences and series
  • Investigate the application of surds in mathematical proofs
USEFUL FOR

Mathematics students, educators, and anyone interested in advanced algebraic techniques, particularly those working with sequences and series involving surds.

Albert1
Messages
1,221
Reaction score
0
$ a_n=(\dfrac{1}{\sqrt n+\sqrt {n-1}})\times(\dfrac{1}{\sqrt {n+1}+\sqrt {n-1}})\times(\dfrac{1}{\sqrt {n+1}+\sqrt n}) $
$S_n=a_1+a_2+a_3+-------+a_n$
$find:\,\, S_{2012}$
 
Mathematics news on Phys.org
Rationalizing the denominator of the expression $$a_n$$ we get:

$ a_n=\left(\dfrac{1}{\sqrt n+\sqrt {n-1}}\cdot \dfrac {\sqrt n-\sqrt {n-1}}{\sqrt n-\sqrt {n-1}}\right)\times\left(\dfrac{1}{\sqrt {n+1}+\sqrt {n-1}}\cdot \dfrac {\sqrt {n+1}-\sqrt {n-1}}{\sqrt {n+1}-\sqrt {n-1}}\right)\times\left(\dfrac{1}{\sqrt {n+1}+\sqrt {n}}\cdot \dfrac {\sqrt {n+1}-\sqrt {n}}{\sqrt {n+1}-\sqrt {n}}\right) $

$ a_n=\left(\dfrac {\sqrt {n}-\sqrt {n-1}}{1}\right)\times \left(\dfrac {\sqrt {n}-\sqrt {n+1}}{-1}\right) \times \left(\dfrac {\sqrt {n+1}-\sqrt {n-1}}{2}\right)$$ a_n=-\dfrac{1}{2}\left(\sqrt{n+1}+\sqrt{n-1}-2\sqrt{n}\right)$

$ a_n=-\dfrac{1}{2}\left(\sqrt{n+1}-\sqrt{n}\right)+\dfrac{1}{2}\left(\sqrt{n}-\sqrt{n-1}\right)$

This is clearly a telescoping series and to compute $$S_{2012}$$, we get:

$$S_{2012}=-\frac{1}{2}(\sqrt {2013}-\sqrt {1})+\frac{1}{2}(\sqrt{2012}-0)$$

$$S_{2012}=\frac{1}{2}-\frac{1}{2}(\sqrt{2013}-\sqrt{2012})$$
 
Last edited:
anemone said:
Rationalizing the denominator of the expression $$a_n$$ we get:$ a_n=-\dfrac{1}{2}\left(\sqrt{n+1}+\sqrt{n-1}-2\sqrt{n}\right)$

$ a_n=-\dfrac{1}{2}\left(\sqrt{n+1}-\sqrt{n}\right)+\dfrac{1}{2}\left(\sqrt{n}-\sqrt{n-1}\right)$

This is clearly a telescoping series and to compute $$S_{2012}$$, we get:

$$S_{2012}=-\frac{1}{2}(\sqrt {2013}-\sqrt {1})+\frac{1}{2}(\sqrt{2012}-0)$$

$$S_{2012}=\frac{1}{2}-(\sqrt{2013}-\sqrt{2012})-------(last \,\, step)$$
your last step is incorrect ,a typo happens
 
Albert said:
your last step is incorrect ,a typo happens

Yep, you're right Albert...I left off $$\frac{1}{2}$$ in front of the surds, I'm sorry and I will fix my first post so that I get the correct answer to this problem.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
849
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K