How do I Solve a Basic Logarithm Problem?

  • Context: MHB 
  • Thread starter Thread starter susanto3311
  • Start date Start date
  • Tags Tags
    Logarithm
Click For Summary
SUMMARY

The discussion focuses on solving logarithmic equations, specifically the equations \(\log_{3x-2}100 = \log_24\) and \(\log_{2x-5}125 = \log_28\). The solutions derived are \(x = 4\) for the first equation and \(x = 5\) for the second. The participants clarify the logarithmic notation and provide step-by-step solutions, demonstrating the application of logarithmic properties to isolate \(x\).

PREREQUISITES
  • Understanding of logarithmic functions and properties
  • Familiarity with solving algebraic equations
  • Knowledge of logarithmic notation and bases
  • Basic skills in manipulating exponents
NEXT STEPS
  • Study the properties of logarithms, including change of base and product/quotient rules
  • Practice solving logarithmic equations with different bases
  • Explore advanced logarithmic applications in exponential growth and decay problems
  • Learn about the graphical representation of logarithmic functions
USEFUL FOR

Students, educators, and anyone seeking to improve their understanding of logarithmic equations and their applications in mathematics.

susanto3311
Messages
73
Reaction score
0
hi guys..

i need help to solve logarithm problem

how to find x?

thanks any help..
 

Attachments

  • log_new.png
    log_new.png
    1 KB · Views: 126
Last edited:
Mathematics news on Phys.org
susanto said:
\text{Solve for }x:\;^{3x-2}\log 100 \:=\:^2\log 4.
I've never seen logarithms written like that . . .

\begin{array}{ccc}\text{We have:} &amp; \log_{3x-2}100 \:=\:\log_24 \\<br /> &amp; \log_{3x-2}100 \:=\:2 \\<br /> &amp; (3x-2)^2 \:=\:100 \\<br /> &amp; 3x-2 \:=\:10 \\<br /> &amp; 3x\:=\:12 \\<br /> &amp; x \:=\:4<br /> \end{array}

 
susanto3311 said:
hi guys..

i need help to solve logarithm problem

how to find x?

thanks any help..
Is this supposed to be [math]\text{log}_{100}(3x - 2) = \text{log}_4 (2)[/math]?

-Dan
 
hi...

what is finally for x?
 
hi soroban...
thank, but how about this...

\begin{array}{ccc}\text{We have:} &amp; \log_{2x-5}125 \:=\:\log_28 \\<br /> <br /> - - - Updated - - -<br /> <br /> <blockquote data-attributes="member: 703424" data-quote="soroban" data-source="post: 6750174" class="bbCodeBlock bbCodeBlock--expandable bbCodeBlock--quote js-expandWatch"> <div class="bbCodeBlock-title"> soroban said: </div> <div class="bbCodeBlock-content"> <div class="bbCodeBlock-expandContent js-expandContent "> I&#039;ve never seen logarithms written like that . . .<br /> <br /> \begin{array}{ccc}\text{We have:} &amp;amp; \log_{3x-2}100 \:=\:\log_24 \\&lt;br /&gt; &amp;amp; \log_{3x-2}100 \:=\:2 \\&lt;br /&gt; &amp;amp; (3x-2)^2 \:=\:100 \\&lt;br /&gt; &amp;amp; 3x-2 \:=\:10 \\&lt;br /&gt; &amp;amp; 3x\:=\:12 \\&lt;br /&gt; &amp;amp; x \:=\:4&lt;br /&gt; \end{array} </div> </div> </blockquote><br /> hi soroban...
 

Attachments

  • log_2.jpg
    log_2.jpg
    3.9 KB · Views: 112
susanto3311 said:
\log_{2x-5}125 \:=\:\log_28
\begin{array}{cc}\log_{2x-5}125 \:=\: \log_28 \\<br /> \log_{2x-5}125 \:=\:3 \\<br /> (2x-5)^3 \:=\:125 \\<br /> 2x-5 \:=\: 5 \\<br /> 2x \:=\: 10 \\<br /> x \:=\:5<br /> \end{array}
- - Updated - - -
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
15K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
12
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K