MHB How do I Solve a Basic Logarithm Problem?

  • Thread starter Thread starter susanto3311
  • Start date Start date
  • Tags Tags
    Logarithm
AI Thread Summary
To solve the logarithm problem, the equation given is log_{3x-2}100 = log_24. This simplifies to log_{3x-2}100 = 2, leading to (3x-2)^2 = 100. Solving this gives 3x-2 = 10, resulting in x = 4. Another logarithm problem presented is log_{2x-5}125 = log_28, which simplifies to log_{2x-5}125 = 3, leading to 2x-5 = 5 and x = 5. The discussion focuses on solving these logarithmic equations step-by-step.
susanto3311
Messages
73
Reaction score
0
hi guys..

i need help to solve logarithm problem

how to find x?

thanks any help..
 

Attachments

  • log_new.png
    log_new.png
    1 KB · Views: 114
Last edited:
Mathematics news on Phys.org
susanto said:
\text{Solve for }x:\;^{3x-2}\log 100 \:=\:^2\log 4.
I've never seen logarithms written like that . . .

\begin{array}{ccc}\text{We have:} &amp; \log_{3x-2}100 \:=\:\log_24 \\<br /> &amp; \log_{3x-2}100 \:=\:2 \\<br /> &amp; (3x-2)^2 \:=\:100 \\<br /> &amp; 3x-2 \:=\:10 \\<br /> &amp; 3x\:=\:12 \\<br /> &amp; x \:=\:4<br /> \end{array}

 
susanto3311 said:
hi guys..

i need help to solve logarithm problem

how to find x?

thanks any help..
Is this supposed to be [math]\text{log}_{100}(3x - 2) = \text{log}_4 (2)[/math]?

-Dan
 
hi...

what is finally for x?
 
hi soroban...
thank, but how about this...

\begin{array}{ccc}\text{We have:} &amp; \log_{2x-5}125 \:=\:\log_28 \\<br /> <br /> - - - Updated - - -<br /> <br /> <blockquote data-attributes="member: 703424" data-quote="soroban" data-source="post: 6750174" class="bbCodeBlock bbCodeBlock--expandable bbCodeBlock--quote js-expandWatch"> <div class="bbCodeBlock-title"> soroban said: </div> <div class="bbCodeBlock-content"> <div class="bbCodeBlock-expandContent js-expandContent "> I&#039;ve never seen logarithms written like that . . .<br /> <br /> \begin{array}{ccc}\text{We have:} &amp;amp; \log_{3x-2}100 \:=\:\log_24 \\&lt;br /&gt; &amp;amp; \log_{3x-2}100 \:=\:2 \\&lt;br /&gt; &amp;amp; (3x-2)^2 \:=\:100 \\&lt;br /&gt; &amp;amp; 3x-2 \:=\:10 \\&lt;br /&gt; &amp;amp; 3x\:=\:12 \\&lt;br /&gt; &amp;amp; x \:=\:4&lt;br /&gt; \end{array} </div> </div> </blockquote><br /> hi soroban...
 

Attachments

  • log_2.jpg
    log_2.jpg
    3.9 KB · Views: 103
susanto3311 said:
\log_{2x-5}125 \:=\:\log_28
\begin{array}{cc}\log_{2x-5}125 \:=\: \log_28 \\<br /> \log_{2x-5}125 \:=\:3 \\<br /> (2x-5)^3 \:=\:125 \\<br /> 2x-5 \:=\: 5 \\<br /> 2x \:=\: 10 \\<br /> x \:=\:5<br /> \end{array}
- - Updated - - -
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top