MHB How do I Solve a Basic Logarithm Problem?

  • Thread starter Thread starter susanto3311
  • Start date Start date
  • Tags Tags
    Logarithm
Click For Summary
To solve the logarithm problem, the equation given is log_{3x-2}100 = log_24. This simplifies to log_{3x-2}100 = 2, leading to (3x-2)^2 = 100. Solving this gives 3x-2 = 10, resulting in x = 4. Another logarithm problem presented is log_{2x-5}125 = log_28, which simplifies to log_{2x-5}125 = 3, leading to 2x-5 = 5 and x = 5. The discussion focuses on solving these logarithmic equations step-by-step.
susanto3311
Messages
73
Reaction score
0
hi guys..

i need help to solve logarithm problem

how to find x?

thanks any help..
 

Attachments

  • log_new.png
    log_new.png
    1 KB · Views: 122
Last edited:
Mathematics news on Phys.org
susanto said:
\text{Solve for }x:\;^{3x-2}\log 100 \:=\:^2\log 4.
I've never seen logarithms written like that . . .

\begin{array}{ccc}\text{We have:} &amp; \log_{3x-2}100 \:=\:\log_24 \\<br /> &amp; \log_{3x-2}100 \:=\:2 \\<br /> &amp; (3x-2)^2 \:=\:100 \\<br /> &amp; 3x-2 \:=\:10 \\<br /> &amp; 3x\:=\:12 \\<br /> &amp; x \:=\:4<br /> \end{array}

 
susanto3311 said:
hi guys..

i need help to solve logarithm problem

how to find x?

thanks any help..
Is this supposed to be [math]\text{log}_{100}(3x - 2) = \text{log}_4 (2)[/math]?

-Dan
 
hi...

what is finally for x?
 
hi soroban...
thank, but how about this...

\begin{array}{ccc}\text{We have:} &amp; \log_{2x-5}125 \:=\:\log_28 \\<br /> <br /> - - - Updated - - -<br /> <br /> <blockquote data-attributes="member: 703424" data-quote="soroban" data-source="post: 6750174" class="bbCodeBlock bbCodeBlock--expandable bbCodeBlock--quote js-expandWatch"> <div class="bbCodeBlock-title"> soroban said: </div> <div class="bbCodeBlock-content"> <div class="bbCodeBlock-expandContent js-expandContent "> I&#039;ve never seen logarithms written like that . . .<br /> <br /> \begin{array}{ccc}\text{We have:} &amp;amp; \log_{3x-2}100 \:=\:\log_24 \\&lt;br /&gt; &amp;amp; \log_{3x-2}100 \:=\:2 \\&lt;br /&gt; &amp;amp; (3x-2)^2 \:=\:100 \\&lt;br /&gt; &amp;amp; 3x-2 \:=\:10 \\&lt;br /&gt; &amp;amp; 3x\:=\:12 \\&lt;br /&gt; &amp;amp; x \:=\:4&lt;br /&gt; \end{array} </div> </div> </blockquote><br /> hi soroban...
 

Attachments

  • log_2.jpg
    log_2.jpg
    3.9 KB · Views: 110
susanto3311 said:
\log_{2x-5}125 \:=\:\log_28
\begin{array}{cc}\log_{2x-5}125 \:=\: \log_28 \\<br /> \log_{2x-5}125 \:=\:3 \\<br /> (2x-5)^3 \:=\:125 \\<br /> 2x-5 \:=\: 5 \\<br /> 2x \:=\: 10 \\<br /> x \:=\:5<br /> \end{array}
- - Updated - - -
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
14K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
535
Replies
1
Views
2K