How do I solve this first order second degree differential equation?

Click For Summary
SUMMARY

The discussion focuses on solving the first order second degree differential equation represented as \((\frac{dy}{dx})^2 + 2x^3 \frac{dy}{dx} - 4x^2y = 0\). The solution involves transforming the equation into a d'Alembert ODE, leading to the analytical solution \(y = cx^2 + c^2\). Key methods discussed include substituting \(y' = p\) and differentiating, which simplifies the equation and allows for the derivation of solutions. The conversation also highlights the importance of recognizing the structure of the ODE to apply appropriate solution techniques.

PREREQUISITES
  • Understanding of first order differential equations
  • Familiarity with d'Alembert and Clairaut ODEs
  • Knowledge of substitution methods in differential equations
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the properties and solution methods for d'Alembert ODEs
  • Explore Clairaut ODEs and their unique characteristics
  • Learn about the method of characteristics for solving partial differential equations
  • Review examples of transforming higher-order differential equations into first-order equations
USEFUL FOR

Mathematicians, engineering students, and anyone interested in advanced differential equations and their applications in physics and engineering.

alan123hk
Messages
817
Reaction score
450
TL;DR
How do I solve this first order second degree differential equation ?
How to solve this first order second degree differential equation ?

##\left(\frac {dy} {dx}\right)^2 + 2x^3 \frac {dy} {dx} - 4x^2y=0 ##

Thanks.
 
Physics news on Phys.org
(y'+x^3)^2-x^6-4x^2(y+x^4/4)+x^6=0
z'^2=4x^2z
where ##z=y+\ x^4/4##.
We see z>0 and
\frac{dz}{dx}=\pm 2x z^{1/2}
 
  • Informative
  • Like
Likes   Reactions: alan123hk and Delta2
This is actually a differential equation that I encountered when I was in university many years ago. Of course, I myself did not have the ability to solve this differential equation. At that time, the professor only told me that its solution was ##~y=cx^2+c^2~ ## , and did not mention the method of solving. Now I am very interested to know how to find the analytical solution, or whether there is a standardized or generalized method to solve such a complicated differential equation.
 
  • Like
Likes   Reactions: Delta2
This is a d'Alembert ODE, also known as a Lagrange ODE. The form of this ODE is
$$ y = xf(y') + g(y') $$
If the "4" was a "2" then it is a Clairaut ODE, which is of the form:
$$ y = xy' + g(y') $$

The solution method involves introducing a new variable for the derivative: ##y'=p## and taking the derivative of the ODE again. Some explanation with worked out examples can be found here:
https://www.math24.net/lagrange-clairaut-equations
https://www.12000.org/my_notes/dAlmbert_ode/index.htm

For your example we simply introduce ##y'=p## and write it as ##y=xf(p) + g(p)##:

$$ y = \frac{1}{2}xp + \frac{1}{4x^2}p^2$$

and we then differentiate with respect to x:

$$ p = \frac{1}{2}p + \frac{1}{2}xp' +\frac{-1}{2x^3}p^2 + \frac{2}{4x^2}pp'$$
or:
$$ (\frac{1}{2x^3}p -\frac{1}{2})p = ( \frac{2}{4x^2}p + \frac{1}{2}x)\frac{dp}{dx}$$

[edit] minus sign wrong, this should be of course : ## (\frac{1}{2x^3}p +\frac{1}{2})p = ( \frac{2}{4x^2}p + \frac{1}{2}x)\frac{dp}{dx}##

we invert the derivation and write it as an ODE in ##\frac{dx}{dp}##:

$$ (\frac{1}{2x^3}p -\frac{1}{2})\frac{dx}{dp} = \frac{x( \frac{1}{2x^3}p +\frac{1}{2} )}{p}$$

We see that if your original ODE had a different minus sign (or maybe I made a mistake?) and was actually ##y'^2 - 2x^3y' +4x^2y=0 ## then this ODE would simplify to

$$ \frac{dx}{dp} = x/p$$

Whose solution is ## x= C p ## or ## p = Cx ##

The final solution of this ODE with different sign in terms of y is obtained by substitution of p into the d'Alembert equation above:

$$ y = \frac{1}{2}Cx^2 - \frac{1}{4x^2}C^2x^2 = C^{*} x^2 - C^{*2}$$

Which is pretty close to the solution that you remember from university.
 
Last edited:
  • Like
Likes   Reactions: Delta2 and alan123hk
bigfooted said:
Which is pretty close to the solution that you remember from university.

Thanks you for providing detailed steps to solve this equation.

I tried to rewrite once as follows.

##\left(\frac {dy} {dx}\right)^2 + 2x^3 \frac {dy} {dx} - 4x^2y=0##

## \text {Let}~~ p=\frac {dy} {dx} ~~~,~~~ p^2+2x^3p-4x^2y=0 ~~~ ,~~~y = \frac{1}{2}xp + \frac{1}{4x^2}p^2 ~~~~~ (1)##

## \text {differentiate with respect to x} ~~~,~~~ p = \frac{1}{2}p + \frac{1}{2}x \left(\frac {dp}{dx}\right) +\frac{-1}{2x^3}p^2 + \frac{2}{4x^2}p\left(\frac {dp}{dx}\right)##

##\left(\frac{1}{2x^3}p -\frac{1}{2}+1\right)p = \left( \frac {2} {4x^2}p +\frac {1}{2}x\right) \frac {dp}{dx}
~~~,~~~\left(\frac{1}{2x^3}p+\frac{1}{2}\right)p = x\left( \frac {1} {2x^3}p +\frac {1}{2}\right) \frac {dp}{dx}##

## \text {Thus} ~~~ \frac {dx}{x}=\frac{dp}{p}~~~,~~~p=Cx ##

## \text{Substitute into equation (1)} ~~~y=\left(\frac{1}{2}C\right)x^2+{\left(\frac{1}{2}C\right)}^2=cx^2+c^2 ~~~ ## :smile:
 
  • Like
Likes   Reactions: Delta2
I saw I made a mistake with the minus sign, I've made an edit to point this out.
 
  • Informative
Likes   Reactions: alan123hk
bigfooted said:
I saw I made a mistake with the minus sign, I've made an edit to point this out.
This is just a small algebraic error, it does not affect you to show a wonderful way to solve that differential equation.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
667
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K