MHB How Do p^n Cos(nx) and p^n Sin(nx) Converge?

Click For Summary
SUMMARY

The convergence of the series $\sum_{n=0}^{\infty} p^n \cos(nx)$ and $\sum_{n=0}^{\infty} p^n \sin(nx)$ is established under the condition that the absolute value of $p$ is less than 1, specifically $|p| < 1$. The discussion highlights the application of Euler's formula, $\mathrm{e}^{i\theta} = \cos(\theta) + i\sin(\theta)$, to derive the series' convergence. The geometric series formula, $s_n = \frac{1}{1 - r}$, is utilized, confirming that the series converges to $\frac{1}{1 - pe^{ix}}$ when $|p| < 1.

PREREQUISITES
  • Understanding of geometric series convergence
  • Familiarity with Euler's formula
  • Basic knowledge of complex numbers
  • Concept of series and limits in calculus
NEXT STEPS
  • Study the convergence criteria for geometric series
  • Explore the applications of Euler's formula in complex analysis
  • Learn about series expansions in calculus
  • Investigate the implications of convergence in Fourier series
USEFUL FOR

Mathematicians, physics students, and anyone studying complex analysis or series convergence, particularly those interested in Fourier series and their applications.

ognik
Messages
626
Reaction score
2
They ask for both $ \sum_{n=0}^{\infty} p^n Cos nx, also \: p^n Sin (nx) $

I'm thinking De Moivre so $$\sum_{n=0}^{\infty}p^n (e^{ix})^n = \sum_{n=0}^{\infty} p^n(Cos x + i Sin x)^n= \sum_{n=0}^{\infty} (pCos x + ip Sin x)^n$$

I also tried a geometric series with a=1, $r=pe^{ix}$

But those won't work out with the limit of $\infty$, so any hints please?
 
Physics news on Phys.org
ognik said:
They ask for both $ \sum_{n=0}^{\infty} p^n Cos nx, also \: p^n Sin (nx) $

I'm thinking De Moivre so $$\sum_{n=0}^{\infty}p^n (e^{ix})^n = \sum_{n=0}^{\infty} p^n(Cos x + i Sin x)^n= \sum_{n=0}^{\infty} (pCos x + ip Sin x)^n$$

I also tried a geometric series with a=1, $r=pe^{ix}$

But those won't work out with the limit of $\infty$, so any hints please?

What makes you think the limit is $\displaystyle \begin{align*} \infty \end{align*}$? The geometric series is convergent where $\displaystyle \begin{align*} |r| < 1 \end{align*}$, so where

$\displaystyle \begin{align*} \left| p\,\mathrm{e}^{\mathrm{i}\,x} \right| &< 1 \\ \left| p \right| \left| \mathrm{e}^{\mathrm{i}\,x} \right| &< 1 \\ \left| p \right| \cdot 1 &< 1 \\ \left| p \right| &< 1 \end{align*}$

As long as you have $\displaystyle \begin{align*} \left| p \right| < 1 \end{align*}$ the series is convergent.Also $\displaystyle \begin{align*} \mathrm{e}^{\mathrm{i}\,\theta} \equiv \cos{ \left( \theta \right) } + \mathrm{i}\sin{ \left( \theta \right) } \end{align*}$ is Euler, not DeMoivre...
 
Thanks Proove it, I was thinking $s_n = \frac{1-r^n}{1-r}$, but if |p| < 1 then |r| < 1 and $s_n = \frac{1}{1-r} = \frac{1}{1-pe^{ix}}$ and with Euler's help it all works out fairly easily :-)
 
Relativistic Momentum, Mass, and Energy Momentum and mass (...), the classic equations for conserving momentum and energy are not adequate for the analysis of high-speed collisions. (...) The momentum of a particle moving with velocity ##v## is given by $$p=\cfrac{mv}{\sqrt{1-(v^2/c^2)}}\qquad{R-10}$$ ENERGY In relativistic mechanics, as in classic mechanics, the net force on a particle is equal to the time rate of change of the momentum of the particle. Considering one-dimensional...

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 9 ·
Replies
9
Views
3K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K