How Do Perturbation Equations Affect FRW Cosmology Metrics?

  • Thread starter Thread starter ergospherical
  • Start date Start date
  • Tags Tags
    Covariant derivative
Click For Summary
Perturbation equations in FRW cosmology metrics are analyzed through the perturbed line element, revealing key relationships in the covariant derivative. The expansion leads to expressions for the energy-momentum tensor components, highlighting the roles of density perturbations and velocity fields. The equations indicate that certain terms, like ##3(1+w) \mathcal{H}(1+\delta)##, may be incorrectly included in the overall equation. The discussion emphasizes the importance of accurately deriving these terms to understand their impact on cosmological models. Clarification on the connection coefficients is also sought to resolve discrepancies in the equations.
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,100
Reaction score
1,387
Homework Statement
##T^{00} = a^{-2} \bar{\rho}(1+\delta)##
##T^{0i} = a^{-2} \bar{\rho}(1+w)v^i##
##T^{ij} = a^{-2} \bar{\rho} [(1+\delta)\delta^{ij} - h^{ij}]##
Relevant Equations
##\nabla_{\mu} T^{\mu \nu} = 0##
The perturbed line element: ##g = a(\tau)^2[-d\tau^2 + (\delta_{ij} + h_{ij})dx^i dx^j]##
Expanding the covariant derivative with ##\nu = 0##, you get a few pieces. Here on keeping only terms linear in the perturbations,

##\partial_{\mu} T^{\mu 0} = a^{-2} \bar{\rho} \left[ \delta' - 2\mathcal{H} (1+\delta) + (1+w) i\mathbf{k} \cdot \mathbf{v} \right]##

here ##\mathcal{H} = a'/a## and ##i \mathbf{k} \cdot \mathbf{v} = \partial_i v^i##. Then

##\Gamma^{\mu}_{\mu \rho} T^{\rho 0} = a^{-2} \bar{\rho} \left[ 4\mathcal{H}(1+\delta) + \frac{1}{2} h' \right]##

##\Gamma^{0}_{\mu \rho} T^{\mu \rho} = a^{-2} \bar{\rho} \left[ \mathcal{H}(1+\delta)(1+3w) + \frac{1}{2} w h' \right]##

Overall,
##0 = a^{-2} \bar{\rho} \left[ \delta' + 3(1+w) \mathcal{H}(1+\delta) + (1+w) i \mathbf{k} \cdot \mathbf{v} + \frac{1}{2}(1+w)h'\right]##

but the term ##3(1+w) \mathcal{H}(1+\delta)## shouldn't be there. I can't see why not? For reference, the connection coefficients

1707826896803.png
 
I want to find the solution to the integral ##\theta = \int_0^{\theta}\frac{du}{\sqrt{(c-u^2 +2u^3)}}## I can see that ##\frac{d^2u}{d\theta^2} = A +Bu+Cu^2## is a Weierstrass elliptic function, which can be generated from ##\Large(\normalsize\frac{du}{d\theta}\Large)\normalsize^2 = c-u^2 +2u^3## (A = 0, B=-1, C=3) So does this make my integral an elliptic integral? I haven't been able to find a table of integrals anywhere which contains an integral of this form so I'm a bit stuck. TerryW

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
Replies
19
Views
2K
Replies
7
Views
3K
Replies
0
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K