How Do Perturbation Equations Affect FRW Cosmology Metrics?

  • Thread starter Thread starter ergospherical
  • Start date Start date
  • Tags Tags
    Covariant derivative
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
Homework Statement
##T^{00} = a^{-2} \bar{\rho}(1+\delta)##
##T^{0i} = a^{-2} \bar{\rho}(1+w)v^i##
##T^{ij} = a^{-2} \bar{\rho} [(1+\delta)\delta^{ij} - h^{ij}]##
Relevant Equations
##\nabla_{\mu} T^{\mu \nu} = 0##
The perturbed line element: ##g = a(\tau)^2[-d\tau^2 + (\delta_{ij} + h_{ij})dx^i dx^j]##
Expanding the covariant derivative with ##\nu = 0##, you get a few pieces. Here on keeping only terms linear in the perturbations,

##\partial_{\mu} T^{\mu 0} = a^{-2} \bar{\rho} \left[ \delta' - 2\mathcal{H} (1+\delta) + (1+w) i\mathbf{k} \cdot \mathbf{v} \right]##

here ##\mathcal{H} = a'/a## and ##i \mathbf{k} \cdot \mathbf{v} = \partial_i v^i##. Then

##\Gamma^{\mu}_{\mu \rho} T^{\rho 0} = a^{-2} \bar{\rho} \left[ 4\mathcal{H}(1+\delta) + \frac{1}{2} h' \right]##

##\Gamma^{0}_{\mu \rho} T^{\mu \rho} = a^{-2} \bar{\rho} \left[ \mathcal{H}(1+\delta)(1+3w) + \frac{1}{2} w h' \right]##

Overall,
##0 = a^{-2} \bar{\rho} \left[ \delta' + 3(1+w) \mathcal{H}(1+\delta) + (1+w) i \mathbf{k} \cdot \mathbf{v} + \frac{1}{2}(1+w)h'\right]##

but the term ##3(1+w) \mathcal{H}(1+\delta)## shouldn't be there. I can't see why not? For reference, the connection coefficients

1707826896803.png
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top