MHB How Do Right and Left Filtrations Relate in Stochastic Calculus?

  • Thread starter Thread starter gnob
  • Start date Start date
Click For Summary
The discussion focuses on the relationships between right and left filtrations in stochastic calculus, specifically the definitions of $\mathcal{F}_{t-}$ and $\mathcal{F}_{t+}$. It establishes that $\mathcal{F}_{t-}$ can be expressed as the union of $\mathcal{F}_s$ for $s < t$, and this can also be represented using rational numbers and sequences approaching $t$. Similarly, it confirms that $\mathcal{F}_{t+}$ is equivalent to the intersection of $\mathcal{F}_{t+\epsilon}$ for $\epsilon > 0$, which can also be expressed using rational numbers. The proof leverages the density of rational numbers in the reals to establish these equalities. Overall, the thread provides a detailed exploration of the properties of $\sigma$-fields in the context of stochastic processes.
gnob
Messages
11
Reaction score
0
Hi! I am reading the book of Karatzas and Shreve (Brownian Motion and Stochastic Calculus - Ioannis Karatzas, Steven E. Shreve - Google Books). On page 4 we have the ff definitions:
$$
\mathcal{F}_{t-} := \sigma \left( \bigcup_{s<t} \mathcal{F}_s \right) \quad \text{and}\quad
\mathcal{F}_{t+} := \sigma \left( \bigcap_{\epsilon >0} \mathcal{F}_{t+\epsilon} \right),
$$
where $t,s \in \mathbb{R}$ and $t,s>0.$

My questions are:
(1) Is $\mathcal{F}_{t-} := \sigma \left( \bigcup_{s<t} \mathcal{F}_s \right)
= \sigma \left( \bigcup_{q<t} \mathcal{F}_q \right)
= \sigma \left( \bigcup_{n=n_k}^{\infty} \mathcal{F}_{t-\frac{1}{n}} \right)$ where $q \in \mathbb{Q} \cap (0,\infty)$ and $n_k \in \mathbb{Z}^+$ are chosen so that $t -\frac{1}{n_k} >0$?

(2) Is $\mathcal{F}_{t+} := \sigma \left( \bigcap_{\epsilon >0} \mathcal{F}_{t+\epsilon} \right)
=\sigma \left( \bigcap_{q >0} \mathcal{F}_{t+q} \right)
=\sigma \left( \bigcap_{n=1}^{\infty} \mathcal{F}_{t+\frac{1}{n}} \right)$ where $q \in \mathbb{Q} \cap (0,\infty)$ and $n \in \mathbb{Z}^+$?

My idea is to use the fact that $\mathbb{Q}$ is dense in $\mathbb{R}$ but i am not sure how to write the proof. Any help would be appreciated. Thanks. :o
 
Physics news on Phys.org
Check that the unions are the same using the fact that if $s<t$ then $\mathcal F_s\subset\mathcal F_t$. Do the same for intersections.
 
girdav said:
Check that the unions are the same using the fact that if $s<t$ then $\mathcal F_s\subset\mathcal F_t$. Do the same for intersections.

Thanks for the suggestion. Please give your comment on the proof I produced. Thanks.

Recall that $\sigma\left(A\right)$ is the smallest $\sigma$-field that contains the set (or family of subsets) $A.$ Hence, for the first question regarding unions, it suffices to show that
$$
\bigcup_{s < t} \mathcal{F}_s =
\bigcup_{q < t} \mathcal{F}_q =
\bigcup_{\substack{n= n_k\\ \left(t-\frac{1}
{n_k}\right)>0}}^{\infty} \mathcal{F}_{t -
\frac{1}{n}}.
$$
To establish the first equality above, we consider an arbitrary $\sigma$-field
$\mathcal{F}_{s_0} \subseteq \bigcup_{ s <t} \mathcal{F}_s.$ Since $\mathbb{Q}$ is dense in $\mathbb{R},$ we can find $q_0 \in \mathbb{Q}$ such that
$s_0 < q_0 <t.$ Because $\{\mathcal{F}_t \}$ is an increasing sequence of $\sigma$-fields, we then have $\mathcal{F}_{s_0} \subseteq \mathcal{F}_{q_0} \subseteq \bigcup_{q <t} \mathcal{F}_q.$ Hence, $\bigcup_{s <t} \mathcal{F}_s \subseteq \bigcup_{q <t} \mathcal{F}_q.$ Conversely, let $\mathcal{F}_{q_0} \subseteq \bigcup_{q <t} \mathcal{F}_q.$ Note that $\mathbb{Q} \subseteq \mathbb{R}$ and so $\mathcal{F}_{q_0} \subseteq \bigcup_{s <t} \mathcal{F}_s,$ which implies that $\bigcup_{q <t} \mathcal{F}_q \subseteq \bigcup_{s <t} \mathcal{F}_s.$

Next, we establish that the extreme unions above are equal. First, observe that $t-\frac{1}{n} \in \mathbb{R}$ for every $n \in \mathbb{N}$ and so $\mathcal{F}_{t-\frac{1}{n}} \subseteq \bigcup_{s<t} \mathcal{F}_s,$ which shows that
$$
\bigcup_{\substack{n= n_k\\ \left(t-\frac{1}{n_k}\right)>0}}^{\infty}
\mathcal{F}_{t - \frac{1}{n}} \subseteq \bigcup_{s <t} \mathcal{F}_s.
$$
For the reverse inclusion, consider an arbitrary $\sigma$-field $\mathcal{F}_{s_0} \subseteq \bigcup_{s <t} \mathcal{F}_s$ and note that $s_0 < t.$ Let $\delta_{0}:= \frac{t - s_0}{2} \in\mathbb{R}_+.$ By the Archimedean property
of $\mathbb{R},$ we can find an integer $n_{k_0} \in \mathbb{N}$ for which $\frac{1}{n_{k_0}} < \delta_0$ so that $s_0 < t - \frac{1}{n_{k_0}} <t$ and
$$
\mathcal{F}_{s_0} \subseteq \mathcal{F}_{t-\frac{1}{n_{k_0}}}
\subseteq \bigcup_{\substack{n= n_k\\ \left(t-
\frac{1}{n_k}\right)>0}}^{\infty} \mathcal{F}_{t - \frac{1}{n}}.
$$
It follows by transitivity that all three unions above are equal, and consequently the last two equalities hold.
For the Second Question (on Intersections): We need to show that
$$
\mathcal{F}_{t+} := \sigma\left(\bigcap_{\epsilon > 0}
\mathcal{F}_{t + \epsilon} \right) = \bigcap_{\epsilon > 0}
\mathcal{F}_{t + \epsilon} = \bigcap_{q >0}
\mathcal{F}_{t + q} = \bigcap_{n=1}^{\infty} \mathcal{F}_{t + \frac{1}{n}}.
$$
It is a standard example in Measure Theory that the intersection of a family of $\sigma$-fields (defined on the same space) is again a $\sigma$-field. So, the first equality is trivial.

We now establish the equality $\bigcap_{\epsilon > 0} \mathcal{F}_{t + \epsilon}= \bigcap_{q >0} \mathcal{F}_{t + q}.$ If $A \in \bigcap_{\epsilon > 0} \mathcal{F}_{t + \epsilon}$ then $A \in \mathcal{F}_{t+\epsilon},\,\,\forall\, \epsilon >0.$ Thus, if we chose all $\epsilon$'s to be positive rationals ($\epsilon = q \in \mathbb{Q}_+$) we also have $A \in \mathcal{F}_{t+q},\,\,\forall\, q >0,$ which in turn implies that $A \in \bigcap_{q >0} \mathcal{F}_{t+q}.$ On the other hand, $B \in \bigcap_{q >0} \mathcal{F}_{t+q}$ implies that $B \in \mathcal{F}_{t + q},\,\,\forall\, q>0.$ Our goal is to show that $B \in\mathcal{F}_{t+\epsilon},\,\,\forall\,\epsilon >0.$ But for a fixed $\epsilon_0>0,$ since $\mathbb{Q}$ is dense in $\mathbb{R},$ we can find a sequence $\{ q^{(0)}_i\}_{i=1}^{\infty}$ such that $q^{(0)}_i \downarrow \epsilon_0.$ Hence,
$$
\mathcal{F}_{t+\epsilon_0} = \lim_{q^{(0)}_i \downarrow\epsilon}
\mathcal{F}_{t+q^{(0)}_i} = \left(\bigcap_{i=1}^{\infty}
\mathcal{F}_{t+ q^{(0)}_i}\right) \ni B.
$$
Consequently, we have $B\in \Big(\bigcap_{\epsilon >0} \mathcal{F}_{t+\epsilon}\Big).$

Lastly, we show that $\bigcap_{\epsilon > 0} \mathcal{F}_{t + \epsilon}= \bigcap_{n \in \mathbb{Z}_+} \mathcal{F}_{t + \frac{1}{n}}.$ But we can use similar argument as above to conclude that $\bigcap_{\epsilon > 0} \mathcal{F}_{t + \epsilon}\subseteq \bigcap_{n \in \mathbb{Z}_+} \mathcal{F}_{t + \frac{1}{n}}.$ For the reverse inclusion, a similar argument can be done by choosing a sequence $\{ \frac{1}{n_i(\epsilon)}\}_i^{\infty} \subseteq \mathbb{Q}$ such that $\frac{1}{n_i(\epsilon)} \downarrow \epsilon$ (Note: WLOG, we can take $\epsilon>0$ to be small since we are taking intersection and that $\{ \mathcal{F}_t\}$ is an increasing family).
 
First trick I learned this one a long time ago and have used it to entertain and amuse young kids. Ask your friend to write down a three-digit number without showing it to you. Then ask him or her to rearrange the digits to form a new three-digit number. After that, write whichever is the larger number above the other number, and then subtract the smaller from the larger, making sure that you don't see any of the numbers. Then ask the young "victim" to tell you any two of the digits of the...

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
994
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K