How Do Right and Left Filtrations Relate in Stochastic Calculus?

  • Context: MHB 
  • Thread starter Thread starter gnob
  • Start date Start date
Click For Summary
SUMMARY

This discussion focuses on the relationship between right and left filtrations in stochastic calculus, specifically referencing the definitions from "Brownian Motion and Stochastic Calculus" by Karatzas and Shreve. The participants confirm that the left filtration $\mathcal{F}_{t-}$ can be expressed as $\sigma \left( \bigcup_{s0} \mathcal{F}_{t+\epsilon} \right)$. They establish that both unions and intersections are equivalent by leveraging the density of rational numbers in real numbers. The proof involves demonstrating the inclusions of the respective $\sigma$-fields.

PREREQUISITES
  • Understanding of $\sigma$-fields and their properties in measure theory.
  • Familiarity with stochastic calculus concepts, particularly filtrations.
  • Knowledge of the density of rational numbers in real numbers.
  • Basic proficiency in mathematical notation and proofs.
NEXT STEPS
  • Study the properties of $\sigma$-fields in measure theory.
  • Explore the concept of filtrations in stochastic processes.
  • Learn about the implications of the density of $\mathbb{Q}$ in $\mathbb{R}$ for analysis.
  • Review examples of right and left limits in stochastic calculus.
USEFUL FOR

Mathematicians, statisticians, and students of stochastic calculus seeking to deepen their understanding of filtrations and their applications in probability theory.

gnob
Messages
11
Reaction score
0
Hi! I am reading the book of Karatzas and Shreve (Brownian Motion and Stochastic Calculus - Ioannis Karatzas, Steven E. Shreve - Google Books). On page 4 we have the ff definitions:
$$
\mathcal{F}_{t-} := \sigma \left( \bigcup_{s<t} \mathcal{F}_s \right) \quad \text{and}\quad
\mathcal{F}_{t+} := \sigma \left( \bigcap_{\epsilon >0} \mathcal{F}_{t+\epsilon} \right),
$$
where $t,s \in \mathbb{R}$ and $t,s>0.$

My questions are:
(1) Is $\mathcal{F}_{t-} := \sigma \left( \bigcup_{s<t} \mathcal{F}_s \right)
= \sigma \left( \bigcup_{q<t} \mathcal{F}_q \right)
= \sigma \left( \bigcup_{n=n_k}^{\infty} \mathcal{F}_{t-\frac{1}{n}} \right)$ where $q \in \mathbb{Q} \cap (0,\infty)$ and $n_k \in \mathbb{Z}^+$ are chosen so that $t -\frac{1}{n_k} >0$?

(2) Is $\mathcal{F}_{t+} := \sigma \left( \bigcap_{\epsilon >0} \mathcal{F}_{t+\epsilon} \right)
=\sigma \left( \bigcap_{q >0} \mathcal{F}_{t+q} \right)
=\sigma \left( \bigcap_{n=1}^{\infty} \mathcal{F}_{t+\frac{1}{n}} \right)$ where $q \in \mathbb{Q} \cap (0,\infty)$ and $n \in \mathbb{Z}^+$?

My idea is to use the fact that $\mathbb{Q}$ is dense in $\mathbb{R}$ but i am not sure how to write the proof. Any help would be appreciated. Thanks. :o
 
Physics news on Phys.org
Check that the unions are the same using the fact that if $s<t$ then $\mathcal F_s\subset\mathcal F_t$. Do the same for intersections.
 
girdav said:
Check that the unions are the same using the fact that if $s<t$ then $\mathcal F_s\subset\mathcal F_t$. Do the same for intersections.

Thanks for the suggestion. Please give your comment on the proof I produced. Thanks.

Recall that $\sigma\left(A\right)$ is the smallest $\sigma$-field that contains the set (or family of subsets) $A.$ Hence, for the first question regarding unions, it suffices to show that
$$
\bigcup_{s < t} \mathcal{F}_s =
\bigcup_{q < t} \mathcal{F}_q =
\bigcup_{\substack{n= n_k\\ \left(t-\frac{1}
{n_k}\right)>0}}^{\infty} \mathcal{F}_{t -
\frac{1}{n}}.
$$
To establish the first equality above, we consider an arbitrary $\sigma$-field
$\mathcal{F}_{s_0} \subseteq \bigcup_{ s <t} \mathcal{F}_s.$ Since $\mathbb{Q}$ is dense in $\mathbb{R},$ we can find $q_0 \in \mathbb{Q}$ such that
$s_0 < q_0 <t.$ Because $\{\mathcal{F}_t \}$ is an increasing sequence of $\sigma$-fields, we then have $\mathcal{F}_{s_0} \subseteq \mathcal{F}_{q_0} \subseteq \bigcup_{q <t} \mathcal{F}_q.$ Hence, $\bigcup_{s <t} \mathcal{F}_s \subseteq \bigcup_{q <t} \mathcal{F}_q.$ Conversely, let $\mathcal{F}_{q_0} \subseteq \bigcup_{q <t} \mathcal{F}_q.$ Note that $\mathbb{Q} \subseteq \mathbb{R}$ and so $\mathcal{F}_{q_0} \subseteq \bigcup_{s <t} \mathcal{F}_s,$ which implies that $\bigcup_{q <t} \mathcal{F}_q \subseteq \bigcup_{s <t} \mathcal{F}_s.$

Next, we establish that the extreme unions above are equal. First, observe that $t-\frac{1}{n} \in \mathbb{R}$ for every $n \in \mathbb{N}$ and so $\mathcal{F}_{t-\frac{1}{n}} \subseteq \bigcup_{s<t} \mathcal{F}_s,$ which shows that
$$
\bigcup_{\substack{n= n_k\\ \left(t-\frac{1}{n_k}\right)>0}}^{\infty}
\mathcal{F}_{t - \frac{1}{n}} \subseteq \bigcup_{s <t} \mathcal{F}_s.
$$
For the reverse inclusion, consider an arbitrary $\sigma$-field $\mathcal{F}_{s_0} \subseteq \bigcup_{s <t} \mathcal{F}_s$ and note that $s_0 < t.$ Let $\delta_{0}:= \frac{t - s_0}{2} \in\mathbb{R}_+.$ By the Archimedean property
of $\mathbb{R},$ we can find an integer $n_{k_0} \in \mathbb{N}$ for which $\frac{1}{n_{k_0}} < \delta_0$ so that $s_0 < t - \frac{1}{n_{k_0}} <t$ and
$$
\mathcal{F}_{s_0} \subseteq \mathcal{F}_{t-\frac{1}{n_{k_0}}}
\subseteq \bigcup_{\substack{n= n_k\\ \left(t-
\frac{1}{n_k}\right)>0}}^{\infty} \mathcal{F}_{t - \frac{1}{n}}.
$$
It follows by transitivity that all three unions above are equal, and consequently the last two equalities hold.
For the Second Question (on Intersections): We need to show that
$$
\mathcal{F}_{t+} := \sigma\left(\bigcap_{\epsilon > 0}
\mathcal{F}_{t + \epsilon} \right) = \bigcap_{\epsilon > 0}
\mathcal{F}_{t + \epsilon} = \bigcap_{q >0}
\mathcal{F}_{t + q} = \bigcap_{n=1}^{\infty} \mathcal{F}_{t + \frac{1}{n}}.
$$
It is a standard example in Measure Theory that the intersection of a family of $\sigma$-fields (defined on the same space) is again a $\sigma$-field. So, the first equality is trivial.

We now establish the equality $\bigcap_{\epsilon > 0} \mathcal{F}_{t + \epsilon}= \bigcap_{q >0} \mathcal{F}_{t + q}.$ If $A \in \bigcap_{\epsilon > 0} \mathcal{F}_{t + \epsilon}$ then $A \in \mathcal{F}_{t+\epsilon},\,\,\forall\, \epsilon >0.$ Thus, if we chose all $\epsilon$'s to be positive rationals ($\epsilon = q \in \mathbb{Q}_+$) we also have $A \in \mathcal{F}_{t+q},\,\,\forall\, q >0,$ which in turn implies that $A \in \bigcap_{q >0} \mathcal{F}_{t+q}.$ On the other hand, $B \in \bigcap_{q >0} \mathcal{F}_{t+q}$ implies that $B \in \mathcal{F}_{t + q},\,\,\forall\, q>0.$ Our goal is to show that $B \in\mathcal{F}_{t+\epsilon},\,\,\forall\,\epsilon >0.$ But for a fixed $\epsilon_0>0,$ since $\mathbb{Q}$ is dense in $\mathbb{R},$ we can find a sequence $\{ q^{(0)}_i\}_{i=1}^{\infty}$ such that $q^{(0)}_i \downarrow \epsilon_0.$ Hence,
$$
\mathcal{F}_{t+\epsilon_0} = \lim_{q^{(0)}_i \downarrow\epsilon}
\mathcal{F}_{t+q^{(0)}_i} = \left(\bigcap_{i=1}^{\infty}
\mathcal{F}_{t+ q^{(0)}_i}\right) \ni B.
$$
Consequently, we have $B\in \Big(\bigcap_{\epsilon >0} \mathcal{F}_{t+\epsilon}\Big).$

Lastly, we show that $\bigcap_{\epsilon > 0} \mathcal{F}_{t + \epsilon}= \bigcap_{n \in \mathbb{Z}_+} \mathcal{F}_{t + \frac{1}{n}}.$ But we can use similar argument as above to conclude that $\bigcap_{\epsilon > 0} \mathcal{F}_{t + \epsilon}\subseteq \bigcap_{n \in \mathbb{Z}_+} \mathcal{F}_{t + \frac{1}{n}}.$ For the reverse inclusion, a similar argument can be done by choosing a sequence $\{ \frac{1}{n_i(\epsilon)}\}_i^{\infty} \subseteq \mathbb{Q}$ such that $\frac{1}{n_i(\epsilon)} \downarrow \epsilon$ (Note: WLOG, we can take $\epsilon>0$ to be small since we are taking intersection and that $\{ \mathcal{F}_t\}$ is an increasing family).
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K