MHB How Do Right and Left Filtrations Relate in Stochastic Calculus?

  • Thread starter Thread starter gnob
  • Start date Start date
gnob
Messages
11
Reaction score
0
Hi! I am reading the book of Karatzas and Shreve (Brownian Motion and Stochastic Calculus - Ioannis Karatzas, Steven E. Shreve - Google Books). On page 4 we have the ff definitions:
$$
\mathcal{F}_{t-} := \sigma \left( \bigcup_{s<t} \mathcal{F}_s \right) \quad \text{and}\quad
\mathcal{F}_{t+} := \sigma \left( \bigcap_{\epsilon >0} \mathcal{F}_{t+\epsilon} \right),
$$
where $t,s \in \mathbb{R}$ and $t,s>0.$

My questions are:
(1) Is $\mathcal{F}_{t-} := \sigma \left( \bigcup_{s<t} \mathcal{F}_s \right)
= \sigma \left( \bigcup_{q<t} \mathcal{F}_q \right)
= \sigma \left( \bigcup_{n=n_k}^{\infty} \mathcal{F}_{t-\frac{1}{n}} \right)$ where $q \in \mathbb{Q} \cap (0,\infty)$ and $n_k \in \mathbb{Z}^+$ are chosen so that $t -\frac{1}{n_k} >0$?

(2) Is $\mathcal{F}_{t+} := \sigma \left( \bigcap_{\epsilon >0} \mathcal{F}_{t+\epsilon} \right)
=\sigma \left( \bigcap_{q >0} \mathcal{F}_{t+q} \right)
=\sigma \left( \bigcap_{n=1}^{\infty} \mathcal{F}_{t+\frac{1}{n}} \right)$ where $q \in \mathbb{Q} \cap (0,\infty)$ and $n \in \mathbb{Z}^+$?

My idea is to use the fact that $\mathbb{Q}$ is dense in $\mathbb{R}$ but i am not sure how to write the proof. Any help would be appreciated. Thanks. :o
 
Physics news on Phys.org
Check that the unions are the same using the fact that if $s<t$ then $\mathcal F_s\subset\mathcal F_t$. Do the same for intersections.
 
girdav said:
Check that the unions are the same using the fact that if $s<t$ then $\mathcal F_s\subset\mathcal F_t$. Do the same for intersections.

Thanks for the suggestion. Please give your comment on the proof I produced. Thanks.

Recall that $\sigma\left(A\right)$ is the smallest $\sigma$-field that contains the set (or family of subsets) $A.$ Hence, for the first question regarding unions, it suffices to show that
$$
\bigcup_{s < t} \mathcal{F}_s =
\bigcup_{q < t} \mathcal{F}_q =
\bigcup_{\substack{n= n_k\\ \left(t-\frac{1}
{n_k}\right)>0}}^{\infty} \mathcal{F}_{t -
\frac{1}{n}}.
$$
To establish the first equality above, we consider an arbitrary $\sigma$-field
$\mathcal{F}_{s_0} \subseteq \bigcup_{ s <t} \mathcal{F}_s.$ Since $\mathbb{Q}$ is dense in $\mathbb{R},$ we can find $q_0 \in \mathbb{Q}$ such that
$s_0 < q_0 <t.$ Because $\{\mathcal{F}_t \}$ is an increasing sequence of $\sigma$-fields, we then have $\mathcal{F}_{s_0} \subseteq \mathcal{F}_{q_0} \subseteq \bigcup_{q <t} \mathcal{F}_q.$ Hence, $\bigcup_{s <t} \mathcal{F}_s \subseteq \bigcup_{q <t} \mathcal{F}_q.$ Conversely, let $\mathcal{F}_{q_0} \subseteq \bigcup_{q <t} \mathcal{F}_q.$ Note that $\mathbb{Q} \subseteq \mathbb{R}$ and so $\mathcal{F}_{q_0} \subseteq \bigcup_{s <t} \mathcal{F}_s,$ which implies that $\bigcup_{q <t} \mathcal{F}_q \subseteq \bigcup_{s <t} \mathcal{F}_s.$

Next, we establish that the extreme unions above are equal. First, observe that $t-\frac{1}{n} \in \mathbb{R}$ for every $n \in \mathbb{N}$ and so $\mathcal{F}_{t-\frac{1}{n}} \subseteq \bigcup_{s<t} \mathcal{F}_s,$ which shows that
$$
\bigcup_{\substack{n= n_k\\ \left(t-\frac{1}{n_k}\right)>0}}^{\infty}
\mathcal{F}_{t - \frac{1}{n}} \subseteq \bigcup_{s <t} \mathcal{F}_s.
$$
For the reverse inclusion, consider an arbitrary $\sigma$-field $\mathcal{F}_{s_0} \subseteq \bigcup_{s <t} \mathcal{F}_s$ and note that $s_0 < t.$ Let $\delta_{0}:= \frac{t - s_0}{2} \in\mathbb{R}_+.$ By the Archimedean property
of $\mathbb{R},$ we can find an integer $n_{k_0} \in \mathbb{N}$ for which $\frac{1}{n_{k_0}} < \delta_0$ so that $s_0 < t - \frac{1}{n_{k_0}} <t$ and
$$
\mathcal{F}_{s_0} \subseteq \mathcal{F}_{t-\frac{1}{n_{k_0}}}
\subseteq \bigcup_{\substack{n= n_k\\ \left(t-
\frac{1}{n_k}\right)>0}}^{\infty} \mathcal{F}_{t - \frac{1}{n}}.
$$
It follows by transitivity that all three unions above are equal, and consequently the last two equalities hold.
For the Second Question (on Intersections): We need to show that
$$
\mathcal{F}_{t+} := \sigma\left(\bigcap_{\epsilon > 0}
\mathcal{F}_{t + \epsilon} \right) = \bigcap_{\epsilon > 0}
\mathcal{F}_{t + \epsilon} = \bigcap_{q >0}
\mathcal{F}_{t + q} = \bigcap_{n=1}^{\infty} \mathcal{F}_{t + \frac{1}{n}}.
$$
It is a standard example in Measure Theory that the intersection of a family of $\sigma$-fields (defined on the same space) is again a $\sigma$-field. So, the first equality is trivial.

We now establish the equality $\bigcap_{\epsilon > 0} \mathcal{F}_{t + \epsilon}= \bigcap_{q >0} \mathcal{F}_{t + q}.$ If $A \in \bigcap_{\epsilon > 0} \mathcal{F}_{t + \epsilon}$ then $A \in \mathcal{F}_{t+\epsilon},\,\,\forall\, \epsilon >0.$ Thus, if we chose all $\epsilon$'s to be positive rationals ($\epsilon = q \in \mathbb{Q}_+$) we also have $A \in \mathcal{F}_{t+q},\,\,\forall\, q >0,$ which in turn implies that $A \in \bigcap_{q >0} \mathcal{F}_{t+q}.$ On the other hand, $B \in \bigcap_{q >0} \mathcal{F}_{t+q}$ implies that $B \in \mathcal{F}_{t + q},\,\,\forall\, q>0.$ Our goal is to show that $B \in\mathcal{F}_{t+\epsilon},\,\,\forall\,\epsilon >0.$ But for a fixed $\epsilon_0>0,$ since $\mathbb{Q}$ is dense in $\mathbb{R},$ we can find a sequence $\{ q^{(0)}_i\}_{i=1}^{\infty}$ such that $q^{(0)}_i \downarrow \epsilon_0.$ Hence,
$$
\mathcal{F}_{t+\epsilon_0} = \lim_{q^{(0)}_i \downarrow\epsilon}
\mathcal{F}_{t+q^{(0)}_i} = \left(\bigcap_{i=1}^{\infty}
\mathcal{F}_{t+ q^{(0)}_i}\right) \ni B.
$$
Consequently, we have $B\in \Big(\bigcap_{\epsilon >0} \mathcal{F}_{t+\epsilon}\Big).$

Lastly, we show that $\bigcap_{\epsilon > 0} \mathcal{F}_{t + \epsilon}= \bigcap_{n \in \mathbb{Z}_+} \mathcal{F}_{t + \frac{1}{n}}.$ But we can use similar argument as above to conclude that $\bigcap_{\epsilon > 0} \mathcal{F}_{t + \epsilon}\subseteq \bigcap_{n \in \mathbb{Z}_+} \mathcal{F}_{t + \frac{1}{n}}.$ For the reverse inclusion, a similar argument can be done by choosing a sequence $\{ \frac{1}{n_i(\epsilon)}\}_i^{\infty} \subseteq \mathbb{Q}$ such that $\frac{1}{n_i(\epsilon)} \downarrow \epsilon$ (Note: WLOG, we can take $\epsilon>0$ to be small since we are taking intersection and that $\{ \mathcal{F}_t\}$ is an increasing family).
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top