A How do we derive the number of string excitation modes for large N?

Eugene Chen
Messages
1
Reaction score
0
On page 52 in Becker, Becker, Schwarz, there is an equation (2.148) for the number of open string excitation modes.
I tried to Tayler expand eq 2.145, but couldn't reproduce 2.148. Plus, one gets 2.145 by setting w close to 1; even if I use the 2.146 and try to analyze it around 0, I am still very far from getting 2.148
Does anyone know any trick to do this?
309674106_809953983537296_1863235808189370018_n.jpg
 
Physics news on Phys.org
It looks like one applies the residue theorem to 2.144 using right hand expression in 2.145. ##\omega=1## is an isolated essential singularity of this expression.
 
https://arxiv.org/pdf/2503.09804 From the abstract: ... Our derivation uses both EE and the Newtonian approximation of EE in Part I, to describe semi-classically in Part II the advection of DM, created at the level of the universe, into galaxies and clusters thereof. This advection happens proportional with their own classically generated gravitational field g, due to self-interaction of the gravitational field. It is based on the universal formula ρD =λgg′2 for the densityρ D of DM...
Many of us have heard of "twistors", arguably Roger Penrose's biggest contribution to theoretical physics. Twistor space is a space which maps nonlocally onto physical space-time; in particular, lightlike structures in space-time, like null lines and light cones, become much more "local" in twistor space. For various reasons, Penrose thought that twistor space was possibly a more fundamental arena for theoretical physics than space-time, and for many years he and a hardy band of mostly...
Back
Top