- #1

jal

- 549

- 0

Here is what I have learned

=========

http://arxiv.org/abs/astro-ph/9909275

A New Calculation of the Recombination Epoch

Authors: Sara Seager, Dimitar D. Sasselov, Douglas Scott

(Submitted on 15 Sep 1999 (v1), last revised 16 Sep 1999 (this version, v2))

Modern codes for evolving the ionization fraction xe = ne/nH (where ne is the number density of electrons and nH is the total number density of H nuclei) have been based almost entirely on the single differential equation introduced 30 years ago, with a more accurate recombination coefficient, but no other basic improvement.

We believe our work represents the most accurate picture to date of how exactly the Universe as a whole became neutral.

In the canonical Hot Big Bang picture, the recombination epoch is when the Universe became cool enough for protons to capture electrons and form neutral hydrogen.

========

1. Phase I Scalar

This is the phase for which we have no evidence. It is open for speculation. Therefore, it can be speculated to be infinite in time and volume. It can be speculated to be in the size range from Planck Scale to 10 ^-18. It can be speculated that the dimensions are only two. In this range you can speculate to have infinite number of fluctuations with OUR section of the universe expanding into the next phase.

2. Phase II Quarks

This the phase of the universe (OURS) for which we have evidence. The remainder could still be in Phase I and until it crosses into our cosmic horizon, it is irrelevant. The size range is between 10^-18 to 10^-15. The minimum length is 10^-18. The universe could have been an infinite “bath” of quarks and gluons for an infinite amount of time. As a result there is no need for cosmic expansion (Accelerated inflation) It could have bounced (LQC/LQG) in this condition forever). However, OUR section of the universe expanded to the next phase. There was a coincident of circumstances in our region, that allowed the bounce to expand, (greater than the confinement size of quarks), and cool. The quarks had to combine to make a hydrogen solid. The duration of this expansion phase are determined by what quarks do.

3. Phase III Hydrogen

The neutrons and electrons could be “manufactured/ionized” at a later stage of expansion (He III followed by He II followed by He I), to produce the photons that give the CMB and to account for the fact that the universe was still ionized up until z 10.

4. Phase IV Post decoupling (CMB) NOW

A “chunk” of solid hydrogen (He III) would be a great attractor for the free hydrogen,

electrons, neutrons, etc. to gather around to make “black holes, quark stars, neutron stars, etc.”

==========

reference

http://arxiv.org/abs/gr-qc/0411012

Primordial Density Perturbation in Effective Loop Quantum Cosmology

Authors: Golam Mortuza Hossain

(Submitted on 1 Nov 2004 (v1), last revised 9 May 2005 (this version, v3))

The observed anisotropy in the CMB sky corresponds to the density perturbation on the last scattering surface. The last scattering surface broadly demarcate the end of radiation

domination era to the beginning of matter domination era.

On last scattering surface they will corresponds to the modes which are well inside the horizon at the time of decoupling. Being smaller in wavelength these mode will subtend smaller angle in present day sky. Naturally these mode will corresponds to the higher multi-pole number. Also if one considers sufficiently narrow bands in these part of

spectrum then one can avoid additional modification coming from the sub-horizon evolution of density perturbation in the period between their re-entry and the decoupling.

To infer the property of primordial density perturbation from the observed angular power

spectrum of CMB, one needs to know the evolution of the universe for the period between the decoupling and the present day universe. Since major fraction of today’s energy density is believed to be coming from mysterious dark matter and dark energy then it is quite obvious that there will be a considerable influence of them on the inferred primordial power spectrum.

--------

--------

Since the observed part of CMB angular power spectrum generally corresponds to early period of inflation then it may well be the situation where the observed part of the CMB angular power spectrum corresponds to the loop quantum cosmology driven inflationary period.

It is worthwhile to emphasize that high amount of expansion in this scenario is required

not to solve horizon problem (being non-singular this model avoids horizon problem [22]) rather to avoid a different kind of problem. We have seen that the ‘initial size’ of universe was typically order of Planck units and the corresponding energy scale was also typically order of Planck units. During relativistic particle (radiation) dominated era energy scale falls of typically with inverse power of the associated length scale. It is then difficult to understand why the universe is so large (∼ 1060Lp) today but still it has relatively very high energy scale (∼ 10−30Mp). During inflationary period, on the other hand, the energy scale remains almost constant whereas the length scale grows almost exponentially with coordinate time.

It is now clear that we can avoid this discrepancy between energy scale and the length scale of the universe provided there existed an inflationary period with sufficiently long duration in early universe.

Now if the observed power spectrum turns out to be not in agreement with the computed

power spectrum, then one should conclude that the phase of inflation corresponding to the observed window couldn’t possibly be driven by loop quantum cosmology modification. It may then restrict the allowed choices for the ambiguity parameter j. Consequently it will be an important issue to understand within the framework of isotropic loop quantum cosmology with minimally coupled scalar matter field, why the observed universe today is so large but still it has sufficiently high energy scale.

--------

http://arxiv.org/abs/0709.3490

Structure formation and the origin of dark energy

Authors: Golam Mortuza Hossain

(Submitted on 21 Sep 2007)

To summarize, we have argued that the origin of dark energy can be understood as a consequence of large scale structure formation. This explanation of dark energy does not require any exotic matter source nor a fine tuned cosmological constant.

----------

A search on spire for SHAPOSHNIKOV , M resulted in 216 hits.

http://www-spires.slac.stanford.edu/spires/find/hep/www?rawcmd=FIND+a+shaposhnikov+,+m&SKIP=0

-------------

http://lanl.arxiv.org/abs/0710.3755

The Standard Model Higgs boson as the inflaton

Authors: F.L. Bezrukov, M.E. Shaposhnikov

(Submitted on 19 Oct 2007 (v1), last revised 9 Jan 2008 (this version, v2))

We argue that the Higgs boson of the Standard Model can lead to inflation and produce cosmological perturbations in accordance with observations. An essential requirement is the non-minimal coupling of the Higgs scalar field to gravity; no new particle besides already present in the electroweak theory is required.

This provides an extra argument in favour of absence of a new energy scale between the electroweak and Planck scales, advocated in [32].

--------

http://lanl.arxiv.org/abs/0708.3550

Is there a new physics between electroweak and Planck scales?

Authors: Mikhail Shaposhnikov

(Submitted on 27 Aug 2007)

We argue that there may be no intermediate particle physics energy scale between the Planck mass $M_{Pl}\sim 10^{19}$ GeV and the electroweak scale $M_W \sim 100$ GeV. At the same time, the number of problems of the Standard Model (neutrino masses and oscillations, dark matter, baryon asymmetry of the Universe, strong CP-problem, gauge coupling unification, inflation) could find their solution at $M_{Pl}$ or $M_W$. The crucial experimental predictions of this point of view are outlined.

----------

--------

http://en.wikipedia.org/wiki/Quarks

Quarks

Quarks are the only fundamental particles that interact through all four of the fundamental forces. Isolated quarks are never found naturally; they are almost always found in groups of two (mesons) or groups of three (baryons) called hadrons. This is a direct consequence of confinement.

----------------

http://en.wikipedia.org/wiki/Cosmic_inflation

cosmic inflation

cosmic inflation is the idea that the nascent universe passed through a phase of exponential expansion that was driven by a negative-pressure vacuum energy density

As a direct consequence of this expansion, all of the observable universe originated in a small causally-connected region.

---------

http://en.wikipedia.org/wiki/Nuclear_fusion

nuclear

nuclear fusion is the process by which multiple atomic particles join together to form a heavier nucleus

-----------

http://en.wikipedia.org/wiki/Nucleosynthesis

Nucleosynthesis

Nucleosynthesis is the process of creating new atomic nuclei from preexisting nucleons (protons and neutrons). The primordial nucleons themselves were formed from the quark-gluon plasma of the Big Bang as it cooled below ten million degrees.

----------------

https://www.llnl.gov/str/JulAug07/Bernstein.html

Nucleosynthesis

-----------

http://en.wikipedia.org/wiki/Ionized

Ionization

Ionization is the physical process of converting an atom or molecule into an ion by adding or removing charged particles such as electrons or other ions

http://en.wikipedia.org/wiki/Orders_of_magnitude_(length )

Orders_of_magnitude

------------

Jean-Pierre Luminet has analysed the CMB and projected the results into the future and he came up with

The projection of their analysis is into the future. It is based on the “past” topological conditions prior the CMB.

Therefore, as said by Jean-Pierre Luminet, “… alternative explanations may still be found, the simplest one being …”, ( here I insert another possibility),

----------

Reference

http://arxiv.org/abs/0802.2236

The Shape and Topology of the Universe

Authors: Jean-Pierre Luminet

(Submitted on 15 Feb 2008)

“Thus the CMB temperature fluctuations look like Chladni patterns resulting from a complicated three-dimensional drumhead that vibrated for 380 000 years.

of the drumhead's harmonics.”

--------

http://www.obspm.fr/actual/nouvelle/feb08/PDS.en.shtml

The Poincaré Dodecahedral Space model

"… the last data obtained by the WMAP satellite and found a topological signal characteristic of the PDS geometry."

---------

http://arxiv.org/abs/0705.0217

A new analysis of Poincaré dodecahedral space model

Authors: S. Caillerie, M. Lachièze-Rey, J.-P. Luminet, R. Lehoucq, A. Riazuelo, J. Weeks

(Submitted on 2 May 2007 (v1), last revised 1 Oct 2007 (this version, v2))

"… Such a distribution of matter fluctuations generates a temperature distribution on the CMB that results from different physical effects.

If we subtract foreground contamination, it will mainly be generated by the ordinary Sachs-Wolfe (OSW) effect at large scales, resulting from the energy exchanges between the CMB photons and the time-varying gravitational fields on the last scattering surface (LSS)."

"Clearly the power spectrum alone cannot confirm a multi-connected cosmological model. Although the PDS model fits the WMAP3 power spectrum better than the standard flat infinite model does, alternative explanations may still be found, the simplest one being an intrinsically non-scale invariant spectrum."

--------

I'm still learning and looking for information. All inputs will be appreciated.

jal

**,….. the experiments on “warm dense matter” (WDM) will have impact on Cosmology.**

Ionized might be a good word to describe the universe prior decoupling.

There will be new calculations to try to understand the universe before decoupling (400,000 years)

Prior to the CMB, the universe was mainly 10^80 hydrogens that would have cooled and gone through the “warm dense matter” (WDM) phase:

There are no neutrons or electrons in the “warm dense matter” (WDM) phase of hydrogen.

Ionized might be a good word to describe the universe prior decoupling.

There will be new calculations to try to understand the universe before decoupling (400,000 years)

Prior to the CMB, the universe was mainly 10^80 hydrogens that would have cooled and gone through the “warm dense matter” (WDM) phase:

There are no neutrons or electrons in the “warm dense matter” (WDM) phase of hydrogen.

=========

http://arxiv.org/abs/astro-ph/9909275

A New Calculation of the Recombination Epoch

Authors: Sara Seager, Dimitar D. Sasselov, Douglas Scott

(Submitted on 15 Sep 1999 (v1), last revised 16 Sep 1999 (this version, v2))

Modern codes for evolving the ionization fraction xe = ne/nH (where ne is the number density of electrons and nH is the total number density of H nuclei) have been based almost entirely on the single differential equation introduced 30 years ago, with a more accurate recombination coefficient, but no other basic improvement.

We believe our work represents the most accurate picture to date of how exactly the Universe as a whole became neutral.

In the canonical Hot Big Bang picture, the recombination epoch is when the Universe became cool enough for protons to capture electrons and form neutral hydrogen.

========

**Note: New data indicates that there was He III (solid) then He II followed by He I. The He III (solid) phase does not have any electrons or neutrons. (it is ionized)**

Under this scenario there could be NEW PLAUSABLE MODELS of the early universe, before decoupling.Under this scenario there could be NEW PLAUSABLE MODELS of the early universe, before decoupling.

1. Phase I Scalar

This is the phase for which we have no evidence. It is open for speculation. Therefore, it can be speculated to be infinite in time and volume. It can be speculated to be in the size range from Planck Scale to 10 ^-18. It can be speculated that the dimensions are only two. In this range you can speculate to have infinite number of fluctuations with OUR section of the universe expanding into the next phase.

2. Phase II Quarks

This the phase of the universe (OURS) for which we have evidence. The remainder could still be in Phase I and until it crosses into our cosmic horizon, it is irrelevant. The size range is between 10^-18 to 10^-15. The minimum length is 10^-18. The universe could have been an infinite “bath” of quarks and gluons for an infinite amount of time. As a result there is no need for cosmic expansion (Accelerated inflation) It could have bounced (LQC/LQG) in this condition forever). However, OUR section of the universe expanded to the next phase. There was a coincident of circumstances in our region, that allowed the bounce to expand, (greater than the confinement size of quarks), and cool. The quarks had to combine to make a hydrogen solid. The duration of this expansion phase are determined by what quarks do.

**Under these MODELS, there is no need to go through a “nuclear fusion/fireball” phase in between the QUARK AND HYDROGEN PHASES.**

A scenario of decreasing pressure and decreasing density does not produce “nucleosynthesis/fireball”.

It is only under constant pressure and gravity that you get nucleosynthesis.A scenario of decreasing pressure and decreasing density does not produce “nucleosynthesis/fireball”.

It is only under constant pressure and gravity that you get nucleosynthesis.

3. Phase III Hydrogen

The neutrons and electrons could be “manufactured/ionized” at a later stage of expansion (He III followed by He II followed by He I), to produce the photons that give the CMB and to account for the fact that the universe was still ionized up until z 10.

4. Phase IV Post decoupling (CMB) NOW

A “chunk” of solid hydrogen (He III) would be a great attractor for the free hydrogen,

electrons, neutrons, etc. to gather around to make “black holes, quark stars, neutron stars, etc.”

**I’ll be looking in the literature to see if these models gets “fleshed out” by a “math kid” and survive.**==========

reference

http://arxiv.org/abs/gr-qc/0411012

Primordial Density Perturbation in Effective Loop Quantum Cosmology

Authors: Golam Mortuza Hossain

(Submitted on 1 Nov 2004 (v1), last revised 9 May 2005 (this version, v3))

The observed anisotropy in the CMB sky corresponds to the density perturbation on the last scattering surface. The last scattering surface broadly demarcate the end of radiation

domination era to the beginning of matter domination era.

On last scattering surface they will corresponds to the modes which are well inside the horizon at the time of decoupling. Being smaller in wavelength these mode will subtend smaller angle in present day sky. Naturally these mode will corresponds to the higher multi-pole number. Also if one considers sufficiently narrow bands in these part of

spectrum then one can avoid additional modification coming from the sub-horizon evolution of density perturbation in the period between their re-entry and the decoupling.

To infer the property of primordial density perturbation from the observed angular power

spectrum of CMB, one needs to know the evolution of the universe for the period between the decoupling and the present day universe. Since major fraction of today’s energy density is believed to be coming from mysterious dark matter and dark energy then it is quite obvious that there will be a considerable influence of them on the inferred primordial power spectrum.

--------

**Note: Hex. packing or random packing also assumes variations in the energy density which would result in variations in the power spectrum.**--------

**In order to have a successful inflation in the standard scenario, generally one requires multi-level of fine tuning of field parameters. In other words one faces several kind of naturalness problems to achieve a successful inflation.**

1. The first one is to start inflation.

2. The second one is to sustain inflation.

3. The third one is to generate sufficient expansion (to solve horizon problem and others).

4. The fourth one is to end inflation.

5. The fifth one is to produce small amplitude for primordial density perturbation.1. The first one is to start inflation.

2. The second one is to sustain inflation.

3. The third one is to generate sufficient expansion (to solve horizon problem and others).

4. The fourth one is to end inflation.

5. The fifth one is to produce small amplitude for primordial density perturbation.

Since the observed part of CMB angular power spectrum generally corresponds to early period of inflation then it may well be the situation where the observed part of the CMB angular power spectrum corresponds to the loop quantum cosmology driven inflationary period.

It is worthwhile to emphasize that high amount of expansion in this scenario is required

not to solve horizon problem (being non-singular this model avoids horizon problem [22]) rather to avoid a different kind of problem. We have seen that the ‘initial size’ of universe was typically order of Planck units and the corresponding energy scale was also typically order of Planck units. During relativistic particle (radiation) dominated era energy scale falls of typically with inverse power of the associated length scale. It is then difficult to understand why the universe is so large (∼ 1060Lp) today but still it has relatively very high energy scale (∼ 10−30Mp). During inflationary period, on the other hand, the energy scale remains almost constant whereas the length scale grows almost exponentially with coordinate time.

It is now clear that we can avoid this discrepancy between energy scale and the length scale of the universe provided there existed an inflationary period with sufficiently long duration in early universe.

Now if the observed power spectrum turns out to be not in agreement with the computed

power spectrum, then one should conclude that the phase of inflation corresponding to the observed window couldn’t possibly be driven by loop quantum cosmology modification. It may then restrict the allowed choices for the ambiguity parameter j. Consequently it will be an important issue to understand within the framework of isotropic loop quantum cosmology with minimally coupled scalar matter field, why the observed universe today is so large but still it has sufficiently high energy scale.

--------

http://arxiv.org/abs/0709.3490

Structure formation and the origin of dark energy

Authors: Golam Mortuza Hossain

(Submitted on 21 Sep 2007)

To summarize, we have argued that the origin of dark energy can be understood as a consequence of large scale structure formation. This explanation of dark energy does not require any exotic matter source nor a fine tuned cosmological constant.

----------

A search on spire for SHAPOSHNIKOV , M resulted in 216 hits.

http://www-spires.slac.stanford.edu/spires/find/hep/www?rawcmd=FIND+a+shaposhnikov+,+m&SKIP=0

-------------

http://lanl.arxiv.org/abs/0710.3755

The Standard Model Higgs boson as the inflaton

Authors: F.L. Bezrukov, M.E. Shaposhnikov

(Submitted on 19 Oct 2007 (v1), last revised 9 Jan 2008 (this version, v2))

We argue that the Higgs boson of the Standard Model can lead to inflation and produce cosmological perturbations in accordance with observations. An essential requirement is the non-minimal coupling of the Higgs scalar field to gravity; no new particle besides already present in the electroweak theory is required.

This provides an extra argument in favour of absence of a new energy scale between the electroweak and Planck scales, advocated in [32].

--------

http://lanl.arxiv.org/abs/0708.3550

Is there a new physics between electroweak and Planck scales?

Authors: Mikhail Shaposhnikov

(Submitted on 27 Aug 2007)

We argue that there may be no intermediate particle physics energy scale between the Planck mass $M_{Pl}\sim 10^{19}$ GeV and the electroweak scale $M_W \sim 100$ GeV. At the same time, the number of problems of the Standard Model (neutrino masses and oscillations, dark matter, baryon asymmetry of the Universe, strong CP-problem, gauge coupling unification, inflation) could find their solution at $M_{Pl}$ or $M_W$. The crucial experimental predictions of this point of view are outlined.

----------

**Note: The minimum length would be 10^-18.**--------

http://en.wikipedia.org/wiki/Quarks

Quarks

Quarks are the only fundamental particles that interact through all four of the fundamental forces. Isolated quarks are never found naturally; they are almost always found in groups of two (mesons) or groups of three (baryons) called hadrons. This is a direct consequence of confinement.

----------------

http://en.wikipedia.org/wiki/Cosmic_inflation

cosmic inflation

cosmic inflation is the idea that the nascent universe passed through a phase of exponential expansion that was driven by a negative-pressure vacuum energy density

As a direct consequence of this expansion, all of the observable universe originated in a small causally-connected region.

---------

http://en.wikipedia.org/wiki/Nuclear_fusion

nuclear

nuclear fusion is the process by which multiple atomic particles join together to form a heavier nucleus

-----------

http://en.wikipedia.org/wiki/Nucleosynthesis

Nucleosynthesis

Nucleosynthesis is the process of creating new atomic nuclei from preexisting nucleons (protons and neutrons). The primordial nucleons themselves were formed from the quark-gluon plasma of the Big Bang as it cooled below ten million degrees.

----------------

https://www.llnl.gov/str/JulAug07/Bernstein.html

Nucleosynthesis

-----------

http://en.wikipedia.org/wiki/Ionized

Ionization

Ionization is the physical process of converting an atom or molecule into an ion by adding or removing charged particles such as electrons or other ions

http://en.wikipedia.org/wiki/Orders_of_magnitude_(length )

Orders_of_magnitude

------------

Jean-Pierre Luminet has analysed the CMB and projected the results into the future and he came up with

**“The Poincaré Dodecahedral Space model”.**The projection of their analysis is into the future. It is based on the “past” topological conditions prior the CMB.

Therefore, as said by Jean-Pierre Luminet, “… alternative explanations may still be found, the simplest one being …”, ( here I insert another possibility),

**we are observing the structure prior the CMB which is made up of hydrogen (H III).**----------

Reference

http://arxiv.org/abs/0802.2236

The Shape and Topology of the Universe

Authors: Jean-Pierre Luminet

(Submitted on 15 Feb 2008)

“Thus the CMB temperature fluctuations look like Chladni patterns resulting from a complicated three-dimensional drumhead that vibrated for 380 000 years.

**They yield a wealth of information about the physical conditions that prevailed in the early Universe,**as well as present geometrical properties like space curvature and topology. More precisely, density fluctuations may be expressed as combinations of the vibrational modes of space, just as the vibration of a drumhead may be expressed as a combinationof the drumhead's harmonics.”

--------

http://www.obspm.fr/actual/nouvelle/feb08/PDS.en.shtml

The Poincaré Dodecahedral Space model

"… the last data obtained by the WMAP satellite and found a topological signal characteristic of the PDS geometry."

---------

http://arxiv.org/abs/0705.0217

A new analysis of Poincaré dodecahedral space model

Authors: S. Caillerie, M. Lachièze-Rey, J.-P. Luminet, R. Lehoucq, A. Riazuelo, J. Weeks

(Submitted on 2 May 2007 (v1), last revised 1 Oct 2007 (this version, v2))

"… Such a distribution of matter fluctuations generates a temperature distribution on the CMB that results from different physical effects.

If we subtract foreground contamination, it will mainly be generated by the ordinary Sachs-Wolfe (OSW) effect at large scales, resulting from the energy exchanges between the CMB photons and the time-varying gravitational fields on the last scattering surface (LSS)."

"Clearly the power spectrum alone cannot confirm a multi-connected cosmological model. Although the PDS model fits the WMAP3 power spectrum better than the standard flat infinite model does, alternative explanations may still be found, the simplest one being an intrinsically non-scale invariant spectrum."

--------

I'm still learning and looking for information. All inputs will be appreciated.

jal

Last edited by a moderator: