MHB How do we prove the rule for differentiable curves in 3D?

Click For Summary
The discussion centers on proving the product rule for the derivative of the cross product of two differentiable curves in 3D, specifically the equation involving $\overrightarrow{\sigma}(t)$ and $\overrightarrow{\rho}(t)$. Participants explore the application of the product rule by expressing the cross product in terms of its components and differentiating. Multiple proofs are presented, confirming the validity of the rule through detailed calculations. The consensus is that no further improvements or explanations are necessary for the presented proofs. The conversation concludes with participants expressing satisfaction with the clarity of the proofs.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

How could we prove the following rule for differentiable curves in $\mathbb{R}^3$ ?? (Wondering)

$$\frac{d}{dt}[\overrightarrow{\sigma}(t)\times \overrightarrow{\rho}(t)]=\frac{d\overrightarrow{\sigma}}{dt}\times \overrightarrow{\rho}(t)+\overrightarrow{\sigma}(t)\times \frac{d\overrightarrow{\rho}}{dt}$$
 
Physics news on Phys.org
mathmari said:
Hey! :o

How could we prove the following rule for differentiable curves in $\mathbb{R}^3$ ?? (Wondering)

$$\frac{d}{dt}[\overrightarrow{\sigma}(t)\times \overrightarrow{\rho}(t)]=\frac{d\overrightarrow{\sigma}}{dt}\times \overrightarrow{\rho}(t)+\overrightarrow{\sigma}(t)\times \frac{d\overrightarrow{\rho}}{dt}$$

Is...

$\displaystyle \overrightarrow{\sigma}(t)\times \overrightarrow{\rho}(t) = \sum_{i=1}^{3} \sigma_{i} (t)\ \rho_{i} (t)$

... and applying the product rule You esasily arrive to the result...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
$\displaystyle \overrightarrow{\sigma}(t)\times \overrightarrow{\rho}(t) = \sum_{i=1}^{3} \sigma_{i} (t)\ \rho_{i} (t)$

Why does this formula stand?? (Wondering)
 
mathmari said:
Hey! :o

How could we prove the following rule for differentiable curves in $\mathbb{R}^3$ ?? (Wondering)

$$\frac{d}{dt}[\overrightarrow{\sigma}(t)\times \overrightarrow{\rho}(t)]=\frac{d\overrightarrow{\sigma}}{dt}\times \overrightarrow{\rho}(t)+\overrightarrow{\sigma}(t)\times \frac{d\overrightarrow{\rho}}{dt}$$
Two different proofs are given here.
 
Opalg said:
Two different proofs are given here.

To use the product rule do we have to write the cross product as followed??

$\overrightarrow{\sigma}(t)=(x_1(t), x_2(t), x_3)), \overrightarrow{\rho}(t)=(y_1(t), y_2(t), y_3(t))$

$$\overrightarrow{\sigma}(t) \times \overrightarrow{\rho}(t)=\begin{vmatrix}
\overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k}\\
x_1(t) & x_2(t) & x_3(t)\\
y_1(t) & y_2(t) & y_3(t)
\end{vmatrix} \\ =(x_2(t)y_3(t)-x_3(t)y_2(t))\overrightarrow{i}+(x_3(t)y_1(t)-x_1(t)y_3(t))\overrightarrow{j}+(x_1(t)y_2(t)-x_2(t)y_1(t))\overrightarrow{k}$$
 
mathmari said:
To use the product rule do we have to write the cross product as followed??

$\overrightarrow{\sigma}(t)=(x_1(t), x_2(t), x_3)), \overrightarrow{\rho}(t)=(y_1(t), y_2(t), y_3(t))$

$$\overrightarrow{\sigma}(t) \times \overrightarrow{\rho}(t)=\begin{vmatrix}
\overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k}\\
x_1(t) & x_2(t) & x_3(t)\\
y_1(t) & y_2(t) & y_3(t)
\end{vmatrix} \\ =(x_2(t)y_3(t)-x_3(t)y_2(t))\overrightarrow{i}+(x_3(t)y_1(t)-x_1(t)y_3(t))\overrightarrow{j}+(x_1(t)y_2(t)-x_2(t)y_1(t))\overrightarrow{k}$$

Yep. (Nod)
 
I have done the following:

$$\frac{d}{dt}[\overrightarrow{\sigma}(t)\times\overrightarrow{\rho}(t)] \\ =\frac{d}{dt}\left [(x_2(t)y_3(t)-x_3(t)y_2(t))\overrightarrow{i}+(x_3(t)y_1(t)-x_1(t)y_3(t))\overrightarrow{j}+(x_1(t)y_2(t)-x_2(t)y_1(t))\overrightarrow{k}\right ] \\ =(x_2'(t)y_3(t)+x_2(t)y_3'(t)-x_3'(t)y_2(t)-x_3(t)y_2'(t))\overrightarrow{i}+(x_3'(t)y_1(t)+x_3(t)y_1'(t)-x_1'(t)y_3(t)-x_1(t)y_3'(t))\overrightarrow{j}+(x_1'(t)y_2(t)+x_1(t)y_2'(t)-x_2'(t)y_1(t)-x_2(t)y_1'(t))\overrightarrow{k} \\ =\left ( (x_2'(t)y_3(t)-x_3'(t)y_2(t))\overrightarrow{i}+(x_3'(t)y_1(t)-x_1'(t)y_3(t))\overrightarrow{j}+(x_1'(t)y_2(t)-x_2'(t)y_1(t))\overrightarrow{k}\right ) +\\ \left ( (x_2(t)y_3'(t)-x_3(t)y_2'(t))\overrightarrow{i}+(x_3(t)y_1'(t)-x_1(t)y_3'(t))\overrightarrow{j}+(x_1(t)y_2'(t)-x_2(t)y_1'(t))\overrightarrow{k}\right ) \\ =\frac{d\overrightarrow{\sigma}(t)}{dt} \times \overrightarrow{\rho}(t)+\overrightarrow{\sigma}(t)\times \frac{\overrightarrow{\rho}(t)}{dt}$$ Is this correct?? (Wondering)

Could I improve something?? (Wondering)

At the equation of the lines $5-7$

$$\left ( (x_2'(t)y_3(t)-x_3'(t)y_2(t))\overrightarrow{i}+(x_3'(t)y_1(t)-x_1'(t)y_3(t))\overrightarrow{j}+(x_1'(t)y_2(t)-x_2'(t)y_1(t))\overrightarrow{k}\right ) +\\ \left ( (x_2(t)y_3'(t)-x_3(t)y_2'(t))\overrightarrow{i}+(x_3(t)y_1'(t)-x_1(t)y_3'(t))\overrightarrow{j}+(x_1(t)y_2'(t)-x_2(t)y_1'(t))\overrightarrow{k}\right ) \\ =\frac{d\overrightarrow{\sigma}(t)}{dt} \times \overrightarrow{\rho}(t)+\overrightarrow{\sigma}(t)\times \frac{\overrightarrow{\rho}(t)}{dt}$$

do I have to say something/explain it?? (Wondering)
 
It looks fine to me. (Smile)

No need for improvements or further explanations. (Wasntme)
 
I like Serena said:
It looks fine to me. (Smile)

No need for improvements or further explanations. (Wasntme)

Nice... Thank you! (Star)
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
8K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
6
Views
2K
Replies
2
Views
2K