How do we prove the rule for differentiable curves in 3D?

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Curves Differentiable
Click For Summary

Discussion Overview

The discussion revolves around the proof of the product rule for differentiable curves in three-dimensional space, specifically focusing on the differentiation of the cross product of two vector functions. Participants explore various approaches to proving the rule and express curiosity about the underlying formulas and their applications.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants propose using the product rule for differentiation as a method to prove the rule for the cross product of two vector functions.
  • Others express curiosity about the validity of the formula for the cross product in terms of its components, questioning why it holds true.
  • A participant presents a detailed differentiation of the cross product, breaking it down into component-wise calculations and asking for feedback on correctness and potential improvements.
  • Some participants confirm that the presented calculations appear correct and suggest no further explanations are necessary.

Areas of Agreement / Disagreement

While some participants agree on the correctness of the calculations presented, there is no consensus on the necessity of further explanations or improvements to the proofs. The discussion remains open to different interpretations and approaches to the proof.

Contextual Notes

Participants have not resolved the question of whether additional explanations are required for the steps taken in the differentiation process. The discussion reflects varying levels of confidence in the proofs and the underlying mathematical principles.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

How could we prove the following rule for differentiable curves in $\mathbb{R}^3$ ?? (Wondering)

$$\frac{d}{dt}[\overrightarrow{\sigma}(t)\times \overrightarrow{\rho}(t)]=\frac{d\overrightarrow{\sigma}}{dt}\times \overrightarrow{\rho}(t)+\overrightarrow{\sigma}(t)\times \frac{d\overrightarrow{\rho}}{dt}$$
 
Physics news on Phys.org
mathmari said:
Hey! :o

How could we prove the following rule for differentiable curves in $\mathbb{R}^3$ ?? (Wondering)

$$\frac{d}{dt}[\overrightarrow{\sigma}(t)\times \overrightarrow{\rho}(t)]=\frac{d\overrightarrow{\sigma}}{dt}\times \overrightarrow{\rho}(t)+\overrightarrow{\sigma}(t)\times \frac{d\overrightarrow{\rho}}{dt}$$

Is...

$\displaystyle \overrightarrow{\sigma}(t)\times \overrightarrow{\rho}(t) = \sum_{i=1}^{3} \sigma_{i} (t)\ \rho_{i} (t)$

... and applying the product rule You esasily arrive to the result...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
$\displaystyle \overrightarrow{\sigma}(t)\times \overrightarrow{\rho}(t) = \sum_{i=1}^{3} \sigma_{i} (t)\ \rho_{i} (t)$

Why does this formula stand?? (Wondering)
 
mathmari said:
Hey! :o

How could we prove the following rule for differentiable curves in $\mathbb{R}^3$ ?? (Wondering)

$$\frac{d}{dt}[\overrightarrow{\sigma}(t)\times \overrightarrow{\rho}(t)]=\frac{d\overrightarrow{\sigma}}{dt}\times \overrightarrow{\rho}(t)+\overrightarrow{\sigma}(t)\times \frac{d\overrightarrow{\rho}}{dt}$$
Two different proofs are given here.
 
Opalg said:
Two different proofs are given here.

To use the product rule do we have to write the cross product as followed??

$\overrightarrow{\sigma}(t)=(x_1(t), x_2(t), x_3)), \overrightarrow{\rho}(t)=(y_1(t), y_2(t), y_3(t))$

$$\overrightarrow{\sigma}(t) \times \overrightarrow{\rho}(t)=\begin{vmatrix}
\overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k}\\
x_1(t) & x_2(t) & x_3(t)\\
y_1(t) & y_2(t) & y_3(t)
\end{vmatrix} \\ =(x_2(t)y_3(t)-x_3(t)y_2(t))\overrightarrow{i}+(x_3(t)y_1(t)-x_1(t)y_3(t))\overrightarrow{j}+(x_1(t)y_2(t)-x_2(t)y_1(t))\overrightarrow{k}$$
 
mathmari said:
To use the product rule do we have to write the cross product as followed??

$\overrightarrow{\sigma}(t)=(x_1(t), x_2(t), x_3)), \overrightarrow{\rho}(t)=(y_1(t), y_2(t), y_3(t))$

$$\overrightarrow{\sigma}(t) \times \overrightarrow{\rho}(t)=\begin{vmatrix}
\overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k}\\
x_1(t) & x_2(t) & x_3(t)\\
y_1(t) & y_2(t) & y_3(t)
\end{vmatrix} \\ =(x_2(t)y_3(t)-x_3(t)y_2(t))\overrightarrow{i}+(x_3(t)y_1(t)-x_1(t)y_3(t))\overrightarrow{j}+(x_1(t)y_2(t)-x_2(t)y_1(t))\overrightarrow{k}$$

Yep. (Nod)
 
I have done the following:

$$\frac{d}{dt}[\overrightarrow{\sigma}(t)\times\overrightarrow{\rho}(t)] \\ =\frac{d}{dt}\left [(x_2(t)y_3(t)-x_3(t)y_2(t))\overrightarrow{i}+(x_3(t)y_1(t)-x_1(t)y_3(t))\overrightarrow{j}+(x_1(t)y_2(t)-x_2(t)y_1(t))\overrightarrow{k}\right ] \\ =(x_2'(t)y_3(t)+x_2(t)y_3'(t)-x_3'(t)y_2(t)-x_3(t)y_2'(t))\overrightarrow{i}+(x_3'(t)y_1(t)+x_3(t)y_1'(t)-x_1'(t)y_3(t)-x_1(t)y_3'(t))\overrightarrow{j}+(x_1'(t)y_2(t)+x_1(t)y_2'(t)-x_2'(t)y_1(t)-x_2(t)y_1'(t))\overrightarrow{k} \\ =\left ( (x_2'(t)y_3(t)-x_3'(t)y_2(t))\overrightarrow{i}+(x_3'(t)y_1(t)-x_1'(t)y_3(t))\overrightarrow{j}+(x_1'(t)y_2(t)-x_2'(t)y_1(t))\overrightarrow{k}\right ) +\\ \left ( (x_2(t)y_3'(t)-x_3(t)y_2'(t))\overrightarrow{i}+(x_3(t)y_1'(t)-x_1(t)y_3'(t))\overrightarrow{j}+(x_1(t)y_2'(t)-x_2(t)y_1'(t))\overrightarrow{k}\right ) \\ =\frac{d\overrightarrow{\sigma}(t)}{dt} \times \overrightarrow{\rho}(t)+\overrightarrow{\sigma}(t)\times \frac{\overrightarrow{\rho}(t)}{dt}$$ Is this correct?? (Wondering)

Could I improve something?? (Wondering)

At the equation of the lines $5-7$

$$\left ( (x_2'(t)y_3(t)-x_3'(t)y_2(t))\overrightarrow{i}+(x_3'(t)y_1(t)-x_1'(t)y_3(t))\overrightarrow{j}+(x_1'(t)y_2(t)-x_2'(t)y_1(t))\overrightarrow{k}\right ) +\\ \left ( (x_2(t)y_3'(t)-x_3(t)y_2'(t))\overrightarrow{i}+(x_3(t)y_1'(t)-x_1(t)y_3'(t))\overrightarrow{j}+(x_1(t)y_2'(t)-x_2(t)y_1'(t))\overrightarrow{k}\right ) \\ =\frac{d\overrightarrow{\sigma}(t)}{dt} \times \overrightarrow{\rho}(t)+\overrightarrow{\sigma}(t)\times \frac{\overrightarrow{\rho}(t)}{dt}$$

do I have to say something/explain it?? (Wondering)
 
It looks fine to me. (Smile)

No need for improvements or further explanations. (Wasntme)
 
I like Serena said:
It looks fine to me. (Smile)

No need for improvements or further explanations. (Wasntme)

Nice... Thank you! (Star)
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
8K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
6
Views
2K
Replies
2
Views
2K