Hello, sleepless!
I have the answer to this problem but I am stumped as how to get there.
. . h(x) = e^x/5/sqrt2x^2-10x+17.
i'm getting stuck moving the square root up. .Why do you want to do that?
I'll take a guess as to what the problem is . . .
. . h(x) \;=\;\frac{e^{\frac{x}{5}}}{\sqrt{2x^2 - 10x + 17}} \;=\;\frac{e^{\frac{1}{5}x}}{(2x^2 - 10x + 17)^{\frac{1}{2}}}\text{Quotient Rule:}
. . h'(x) \;=\; \frac{(2x^2-10x+17)^{\frac{1}{2}}\cdot e^{\frac{1}{5}x} \!\cdot\!\frac{1}{5} \;-\; e^{\frac{1}{5}x}\!\cdot\!\frac{1}{2}(2x^2-10x+17)^{-\frac{1}{2}}(4x-10)} {2x^2 - 10x + 7}
. . . . . . =\;\frac{\frac{1}{5}e^{\frac{x}{5}}(2x^2 - 10x + 17)^{\frac{1}{2}} \;-\; e^{\frac{x}{5}}(2x-5)(2x^2-10x+17)^{-\frac{1}{2}}}{2x^2-10x+17}
Multiply numerator and denominator by (2x^2-10x + 17)^{\frac{1}{2}}
. . h'(x) \;=\;\frac{\frac{1}{5}e^{\frac{x}{5}}(2x^2-10x + 17) \;-\; e^{\frac{x}{5}}(2x-5)}{(2x^2-10x+17)^{\frac{3}{2}}}
. . . . . . =\;\tfrac{1}{5}e^{\frac{x}{5}}\!\cdot\!\frac{(2x^2 - 10x + 17) \;-\; 5(2x-5)}{(2x^2-10x+17)^{\frac{3}{2}}}
. . . . . . =\;\tfrac{1}{5}e^{\frac{x}{5}}\!\cdot\!\frac{2x^2 - 10x + 17 - 10x + 25}{(2x^2-10x+17)^{\frac{3}{2}}}
. . . . . . =\;\tfrac{1}{5}e^{\frac{x}{5}}\!\cdot \!\frac{2x^2-20x + 42}{(2x^2-20x+17)^{\frac{3}{2}}}
. . . . . . =\;\tfrac{2}{5}e^{\frac{x}{5}}\!\cdot\!\frac{x^2-10x + 21}{(2x^2-10x+17)^{\frac{3}{2}}}