How Do You Calculate Angles AEC and ADC in Geometry?

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Adc Angle
AI Thread Summary
The discussion focuses on calculating angles AEC and ADC in a geometric context using the Alternate Segment Theorem. The calculations reveal that ∠ABC is 88° and ∠EBC is 92°, leading to further deductions about other angles in the diagram. Participants debate the validity of certain angle relationships, particularly concerning the assumption of AC being a diameter, which is not stated. There is a consensus that while some angles can be calculated, others remain indeterminate due to lack of information. The conversation emphasizes the importance of understanding the properties of cyclic quadrilaterals and inscribed angles.
chwala
Gold Member
Messages
2,825
Reaction score
413
Homework Statement
See attached
Relevant Equations
Deductive Geometry- Alternate segment theorem
Question;

1665293177519.png


Text Solution;

1665293221966.png


My reasoning;
##∠ABC= 180^0 -(32^0+60^0)##
=##88^0##

##∠ABC=∠ACF=88^0## (Alternate segment theorem).

##∠EBC=92^0## i.e angles lying on a straight line and ##∠BCE=180^0 -(88^0+60^0)=32^0## therefore;
##∠BEC=180^0 -(32^0+92^0)=56^0##
##∠ECA=∠ADC=32^0+60^0=92^0## (by Alternate segment theorem).

Cheers...there may be another way of looking at this...
 
  • Like
Likes Lnewqban
Physics news on Phys.org
Regarding ##∠EBC=92^0##:
Doesn't the problem figure contradicts the fact that an angle inscribed across a circle's diameter is always a right angle?
 
Lnewqban said:
Regarding ##∠EBC=92^0##:
Doesn't the problem figure contradicts the fact that an angle inscribed across a circle's diameter is always a right angle?
...but we are not told if ##AC## is the diameter of the circle. We have only been given an indication of the tangent line, that is line ##ECF##.
 
  • Like
Likes Lnewqban
Lnewqban said:
Regarding ##∠EBC=92^0##:
Doesn't the problem figure contradicts the fact that an angle inscribed across a circle's diameter is always a right angle?
AC isn't a diameter, that was never mentioned
 
  • Like
Likes chwala
chwala said:
Homework Statement:: See attached
Relevant Equations:: Deductive Geometry- Alternate segment theorem

Question;

View attachment 315298

Text Solution;

View attachment 315299

My reasoning;
##∠ABC= 180^0 -(32^0+60^0)##
=##88^0##

##∠ABC=∠ACF=88^0## (Alternate segment theorem).

##∠EBC=92^0## i.e angles lying on a straight line and ##∠BCE=180^0 -(88^0+60^0)=32^0## therefore;
##∠BEC=180^0 -(32^0+92^0)=56^0##
##∠ECA=∠ADC=32^0+60^0=92^0## (by Alternate segment theorem).

Cheers...there may be another way of looking at this...
You are correct that angles ##∠ACF=88^\circ## and ##∠EBC=92^\circ## .
However, your reasoning leading to determining angle ##∠BCE## is faulty, because you do not know a value for angle ##∠ACF## either.

An angle you can easily determine is ##∠ADC##. (There's a cyclic quadrilateral involved.)
 
SammyS said:
You are correct that angles ##∠ACF=88^\circ## and ##∠EBC=92^\circ## .
However, your reasoning leading to determining angle ##∠BCE## is faulty, because you do not know a value for angle ##∠ACF## either.

An angle you can easily determine is ##∠ADC##. (There's a cyclic quadrilateral involved.)
@sammy but we know that ##∠ECA=∠ADC## using the alternate segment theorem. Angle ##BCE=32^0.## I do not need ##∠ACF## to determine this.
 
Last edited:
...Just thinking is it possible to determine all the angles in the given diagram? my thinking is as shown on the diagram below;

My reasoning being ##∠EBC## is similar to ##∠ADC## they have a common angle i.e ##92^0##.

##∠CAD=DCF=BEC=56^0##

##∠ACD=88^0 - ∠DCF=32^0##
 

Attachments

  • math diagram.png
    math diagram.png
    40.2 KB · Views: 156
chwala said:
@sammy but we know that ##∠ECA=∠ADC## using the alternate segment theorem. Angle ##BCE=32^0.## I do not need ##∠ACF## to determine this.
Apologies !

I overlooked your reasoning establishing that ##∠ABC=∠ACF## .
 
  • Like
Likes chwala
chwala said:
...Just thinking is it possible to determine all the angles in the given diagram? my thinking is as shown on the diagram below;

My reasoning being ##∠EBC## is similar to ##∠ADC## they have a common angle i.e ##92^0##.

##∠CAD=DCF=BEC=56^0##

##∠ACD=88^0 - ∠DCF=32^0##

math-diagram-png.png
Yes, ##∠CAD=∠DCF## .

But no, you can not determine ##∠ACD## , ##∠CAD## , nor ##∠DCF## .
 
Back
Top