MHB How Do You Calculate the Sum of Cubed Tangents for Angles from 0 to 89 Degrees?

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The discussion focuses on evaluating the sum of the function 1/(1+tan^3(k°)) for angles k ranging from 0 to 89 degrees. Participants share their solutions, with castor28 and kaliprasad providing correct answers. The thread encourages engagement by referencing guidelines for submitting solutions. The mathematical challenge highlights the properties of tangent functions and their behavior across the specified angle range. Overall, the thread serves as a platform for problem-solving and sharing mathematical insights.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

Evaluate $$\sum_{k=0}^{89} \frac{1}{1+\tan^{3} (k^{\circ})}$$.

-----

Remember to read the https://mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to https://mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to the following members for their correct solution!(Cool)

1. castor28
2. kaliprasad

Solution from castor28:
Let us write $f(k) = \dfrac{1}{1+\tan^3(k\mbox{°})}$ and $S$ for the sum. We have:
$$
S = f(0) + \sum_{k=1}^{44} \left(f(k)+f(90-k)\right) + f(45)
$$
Now,
\begin{align*}
f(k) + f(90-k) &= \frac{1}{1+\tan^3(k\mbox{°})} + \frac{1}{1+\cot^3(k\mbox{°})}\\
&= 1
\end{align*}
where we use the fact that $\cot(x)=\dfrac{1}{\tan(x)}$ and the identity:
$$
\frac{1}{1+x} + \frac{1}{1+\dfrac{1}{x}}=1
$$
This gives:
\begin{align*}
S &= f(0) + \sum_{k=1}^{44}(1) + f(45)\\
&= 0 + 44 + \frac12\\
&= {\bf 45.5}
\end{align*}

Alternate solution from kaliprasad:
We have $$\sum^{89}_{n=0}\frac{1}{1+\tan^3(k^\circ)}$$
$$
= \sum^{89}_{n=0}\frac{\cos^3(k^\circ)}{\cos^3(k^\circ)+\sin ^3(k^\circ)}$$

$$=\frac{\cos^3(0^\circ)}{\cos^3(0^\circ)+\sin ^3(0^\circ)} + \sum^{44}_{n=1}\frac{\sin^3(k^\circ)}{\cos^3(k^\circ)+\sin ^3(k^\circ)} + \frac{\sin^3(45^\circ)}{\cos^3(45^\circ)+\sin ^3(45^\circ)}+ \sum^{89}_{n=46}\frac{\sin^3(k^\circ)}{\cos^3(k^\circ)+\sin ^3(k^\circ)}$$ splitting into 4 parts

$$=\frac{1}{1+0} + \sum^{44}_{n=1}\frac{\sin^3(k^\circ)}{\cos^3(k^\circ)+\sin ^3(k^\circ)} + \frac{\sin^3(45^\circ)}{\sin^3(45^\circ)+\sin ^3(45^\circ)}+ \sum^{89}_{n=46}\frac{\sin^3(k^\circ)}{\cos^3(k^\circ)+\sin ^3(k^\circ)}$$ as $\sin\,45^\circ = \cos \, 45^\circ$

$$=\frac{1}{1+0} + \sum^{44}_{n=1}\frac{\sin^3(k^\circ)}{\cos^3(k^\circ)+\sin ^3(k^\circ)} + \frac{1}{2}+ \sum^{89}_{n=46}\frac{\cos^3(90^\circ- k^\circ)}{\cos^3(k^\circ)+\sin ^3(k^\circ)}$$ putting values and using $\sin\,x^\circ = \cos \,(90^\circ-x)$

$$=\frac{3}{2} + \sum^{44}_{n=1}\frac{\sin^3(k^\circ)}{\cos^3(k^\circ)+\sin ^3(k^\circ)} + \sum^{89}_{n=46}\frac{\cos^3(90^\circ- k^\circ)}{\cos^3(k^\circ)+\sin ^3(k^\circ)}$$

$$=\frac{3}{2} + \sum^{44}_{n=1}\frac{\sin^3(k^\circ)}{\cos^3(k^\circ)+\sin ^3(k^\circ)} + \sum^{46}_{n=89}\frac{\cos^3(90^\circ- k^\circ)}{\cos^3(k^\circ)+\sin ^3(k^\circ)}$$ reversing order of sum of cos terms

$$=\frac{3}{2} + \sum^{44}_{n=1}\frac{\sin^3(k^\circ)}{\cos^3(k^\circ)+\sin ^3(k^\circ)} + \sum^{44}_{n=1}\frac{\cos^3( k^\circ)}{\cos^3(k^\circ)+\sin ^3(k^\circ)}$$

$$=\frac{3}{2} + \sum^{44}_{n=1}\frac{\sin^3(k^\circ)+\cos^3( k^\circ)}{\cos^3(k^\circ)+\sin ^3(k^\circ)}$$

$$=\frac{3}{2} + \sum^{44}_{n=1} 1= 1.5 + 44 \\= 45.5$$
 
Back
Top