How Do You Calculate the Sum of Cubed Tangents for Angles from 0 to 89 Degrees?

  • Context: High School 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on calculating the sum $$\sum_{k=0}^{89} \frac{1}{1+\tan^{3} (k^{\circ})}$$. Two members, castor28 and kaliprasad, provided correct solutions to this Problem of the Week (POTW). Their approaches highlight the mathematical techniques involved in evaluating sums of trigonometric functions, specifically the tangent function raised to a power. The solutions emphasize the importance of understanding trigonometric identities and properties for accurate calculations.

PREREQUISITES
  • Understanding of trigonometric functions, specifically tangent.
  • Familiarity with summation notation and series.
  • Knowledge of mathematical identities related to angles.
  • Basic calculus concepts for evaluating limits and sums.
NEXT STEPS
  • Explore trigonometric identities and their applications in summation problems.
  • Learn advanced techniques for evaluating series involving trigonometric functions.
  • Study the properties of tangent and its behavior across different quadrants.
  • Investigate numerical methods for approximating sums of complex functions.
USEFUL FOR

Mathematicians, students studying calculus and trigonometry, and anyone interested in solving complex summation problems involving trigonometric functions.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

Evaluate $$\sum_{k=0}^{89} \frac{1}{1+\tan^{3} (k^{\circ})}$$.

-----

Remember to read the https://mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to https://mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to the following members for their correct solution!(Cool)

1. castor28
2. kaliprasad

Solution from castor28:
Let us write $f(k) = \dfrac{1}{1+\tan^3(k\mbox{°})}$ and $S$ for the sum. We have:
$$
S = f(0) + \sum_{k=1}^{44} \left(f(k)+f(90-k)\right) + f(45)
$$
Now,
\begin{align*}
f(k) + f(90-k) &= \frac{1}{1+\tan^3(k\mbox{°})} + \frac{1}{1+\cot^3(k\mbox{°})}\\
&= 1
\end{align*}
where we use the fact that $\cot(x)=\dfrac{1}{\tan(x)}$ and the identity:
$$
\frac{1}{1+x} + \frac{1}{1+\dfrac{1}{x}}=1
$$
This gives:
\begin{align*}
S &= f(0) + \sum_{k=1}^{44}(1) + f(45)\\
&= 0 + 44 + \frac12\\
&= {\bf 45.5}
\end{align*}

Alternate solution from kaliprasad:
We have $$\sum^{89}_{n=0}\frac{1}{1+\tan^3(k^\circ)}$$
$$
= \sum^{89}_{n=0}\frac{\cos^3(k^\circ)}{\cos^3(k^\circ)+\sin ^3(k^\circ)}$$

$$=\frac{\cos^3(0^\circ)}{\cos^3(0^\circ)+\sin ^3(0^\circ)} + \sum^{44}_{n=1}\frac{\sin^3(k^\circ)}{\cos^3(k^\circ)+\sin ^3(k^\circ)} + \frac{\sin^3(45^\circ)}{\cos^3(45^\circ)+\sin ^3(45^\circ)}+ \sum^{89}_{n=46}\frac{\sin^3(k^\circ)}{\cos^3(k^\circ)+\sin ^3(k^\circ)}$$ splitting into 4 parts

$$=\frac{1}{1+0} + \sum^{44}_{n=1}\frac{\sin^3(k^\circ)}{\cos^3(k^\circ)+\sin ^3(k^\circ)} + \frac{\sin^3(45^\circ)}{\sin^3(45^\circ)+\sin ^3(45^\circ)}+ \sum^{89}_{n=46}\frac{\sin^3(k^\circ)}{\cos^3(k^\circ)+\sin ^3(k^\circ)}$$ as $\sin\,45^\circ = \cos \, 45^\circ$

$$=\frac{1}{1+0} + \sum^{44}_{n=1}\frac{\sin^3(k^\circ)}{\cos^3(k^\circ)+\sin ^3(k^\circ)} + \frac{1}{2}+ \sum^{89}_{n=46}\frac{\cos^3(90^\circ- k^\circ)}{\cos^3(k^\circ)+\sin ^3(k^\circ)}$$ putting values and using $\sin\,x^\circ = \cos \,(90^\circ-x)$

$$=\frac{3}{2} + \sum^{44}_{n=1}\frac{\sin^3(k^\circ)}{\cos^3(k^\circ)+\sin ^3(k^\circ)} + \sum^{89}_{n=46}\frac{\cos^3(90^\circ- k^\circ)}{\cos^3(k^\circ)+\sin ^3(k^\circ)}$$

$$=\frac{3}{2} + \sum^{44}_{n=1}\frac{\sin^3(k^\circ)}{\cos^3(k^\circ)+\sin ^3(k^\circ)} + \sum^{46}_{n=89}\frac{\cos^3(90^\circ- k^\circ)}{\cos^3(k^\circ)+\sin ^3(k^\circ)}$$ reversing order of sum of cos terms

$$=\frac{3}{2} + \sum^{44}_{n=1}\frac{\sin^3(k^\circ)}{\cos^3(k^\circ)+\sin ^3(k^\circ)} + \sum^{44}_{n=1}\frac{\cos^3( k^\circ)}{\cos^3(k^\circ)+\sin ^3(k^\circ)}$$

$$=\frac{3}{2} + \sum^{44}_{n=1}\frac{\sin^3(k^\circ)+\cos^3( k^\circ)}{\cos^3(k^\circ)+\sin ^3(k^\circ)}$$

$$=\frac{3}{2} + \sum^{44}_{n=1} 1= 1.5 + 44 \\= 45.5$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K