MHB How Do You Calculate the Sum of Sides and Diagonals of a Regular 12-Gon?

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
To calculate the sum of the lengths of all sides and diagonals of a regular 12-gon inscribed in a circle of radius 12, one must derive the lengths of the sides and diagonals based on their geometric properties. The total length can be expressed in the form a+b√2+c√3+d√6, where a, b, c, and d are positive integers. The correct solution was provided by kaliprasad, who successfully computed the values of a, b, c, and d. This problem emphasizes the importance of understanding polygon geometry and trigonometric relationships. The final task is to find the sum of these integers a, b, c, and d.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

A regular 12-gon is inscribed in a circle of radius 12. The sum of the lengths of all sides and diagonals of the 12-gon can be written in the form $a+b\sqrt{2}+c\sqrt{3}+d\sqrt{6}$, where $a,\,b,\,c$ and $d$ are positive integers. Find $a+b+c+d$.

-----

 
Physics news on Phys.org
Congratulations to kaliprasad for his correct solution! (Cool)

You can find the suggested solution below:
Position the 12-gon in the Cartesian plane with its center at the origin and one vertex at $(12,\,0)$. Compute the sum, $S$, of the lengths of the eleven segments emanating from this vertex. The coordinates of the other vertices are given by $(12\cos kx,\,12\sin kx)$ where $x=30^{\circ}$ and $k=1,\,2,\,\cdots,\,11$. The length of the segment joining $(12,\,0)$ to $(12\cos kx,\,12\sin kx)$ is

$12\sqrt{(\cos kx-1)^2+(\sin kx)^2}=12\sqrt{2-2\cos kx}=24\sin \dfrac{kx}{2}$

Thus the sum of the lengths of the 11 segments from $(12,\,0)$ is

$S=24(\sin 15^{\circ}+\sin 30^{\circ}+\cdots+\sin 150^{\circ})+24\sin 165^{\circ}$

Since $\sin t=\sin (180^{\circ}-t)$, we may write

$S=48(\sin 15^{\circ}+\sin 30^{\circ}+\sin 45^{\circ}+\sin 60^{\circ}+\sin 75^{\circ})+24\sin 90^{\circ}$

Now,

$\begin{align*}\sin 15^{\circ}+\sin 75^{\circ}&=\sin (45^{\circ} -30^{\circ})+\sin (45^{\circ} +30^{\circ})\\&=2\sin 45^{\circ} \cos 30^{\circ}\\&=\dfrac{\sqrt{6}}{2}\end{align*}$

Thus,

$\begin{align*}S&=48\left(\dfrac{\sqrt{6}}{2}+\dfrac{1}{2}+\dfrac{\sqrt{2}}{2}+\dfrac{\sqrt{3}}{2}\right)+24\\&=48+24\sqrt{2}+24\sqrt{3}+24\sqrt{6}\end{align*}$

The same values, $S$, occurs if we add the lengths of all segments emanating from any other vertex of the 12-gon. Since each segment is counted at two vertices (its endpoints) the total length of all such segment is

$\dfrac{1}{2}(12S)=288+144\sqrt{2}+144\sqrt{3}+144\sqrt{6}$

Hence, $a+b+c+d=288+144+144+144=720$.
 
Back
Top