How Do You Derive the Time-Averaged Energy Density from Jackson's Formulation?

Click For Summary
SUMMARY

The discussion focuses on deriving the time-averaged energy density from Jackson's formulation, specifically transitioning from the expression \(\frac{1}{2}(\mathbf{E}\cdot\mathbf{D}+\mathbf{H}\cdot\mathbf{B})\) (Eq. 6.106) to \(\frac{1}{4}(\epsilon\mathbf{E}\cdot\mathbf{E}^*+\frac{1}{\mu}\mathbf{B}\cdot\mathbf{B}^*)\) (Eq. 7.13). The integral \(\int_0^{\frac{2\pi}{\omega}} e^{2i\omega t} dt\) is confirmed to equal zero, which is crucial for simplifying the derivation. The participant also noted that their expression for \(\mathbf{E}\) should be real, as complex electric fields are not applicable in this context. The final expression was successfully derived, albeit with some complications from cross-multiplication.

PREREQUISITES
  • Understanding of electromagnetic theory, particularly energy density concepts.
  • Familiarity with Jackson's Classical Electrodynamics, specifically equations 6.106 and 7.13.
  • Knowledge of complex exponentials and their integrals in the context of Fourier analysis.
  • Proficiency in calculus, particularly integration techniques involving periodic functions.
NEXT STEPS
  • Study the derivation of the Poynting vector and its relation to energy density.
  • Learn about the properties of complex fields in electromagnetic theory.
  • Explore Fourier series and their applications in solving electromagnetic problems.
  • Review Jackson's Classical Electrodynamics for deeper insights into energy density derivations.
USEFUL FOR

Students and professionals in physics, particularly those studying electromagnetism and energy density calculations, as well as anyone involved in advanced theoretical physics research.

schrodingerscat11
Messages
86
Reaction score
1

Homework Statement


Given the energy density expression from Jackson
\frac{1}{2}\big(\mathbf{E}\cdot\mathbf{D}+\mathbf{H}\cdot\mathbf{B}\big) (Eq. 6.106)

Show the missing steps to arrive at the time-averaged energy density
\frac{1}{4}\big(\epsilon\mathbf{E}\cdot\mathbf{E}^*+\frac{1}{\mu}\mathbf{B}\cdot\mathbf{B}^*\big) (Eq. 7.13)

Homework Equations


See problem above.
\langle u \rangle_t=\frac{1}{T}\int_0^Tu(t) dt (time-averaged quantity)

The Attempt at a Solution


\langle u \rangle_t=\frac{1}{T}\int_0^Tu(t) dt
\langle u \rangle_t=\frac{1}{T}\int_0^T \frac{1}{2}\big(\mathbf{E}\cdot\mathbf{D}+\mathbf{H}\cdot\mathbf{B}\big) dt
\langle u \rangle_t=\frac{1}{T}\int_0^T \frac{1}{2}\big(\mathbf{E}\cdot\epsilon\mathbf{E}+\frac{1}{\mu}\mathbf{B}\cdot\mathbf{B}\big) dt

\mathbf{E}=\mathcal{E}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}
\mathbf{B}=\mathcal{B}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}

\langle u \rangle_t=\frac{1}{T}\int_0^T \frac{1}{2}\big(\mathcal{E}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}\cdot\epsilon\mathcal{E}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}+\frac{1}{\mu}\mathcal{B}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}\cdot\mathcal{B}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}\big) dt

\langle u \rangle_t=\frac{\omega}{2\pi}\int_0^{\frac{2\pi}{\omega}} \frac{1}{2}\big(\mathcal{E}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}\cdot\epsilon\mathcal{E}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}+\frac{1}{\mu}\mathcal{B}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}\cdot\mathcal{B}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}\big) dt

T=\frac{2\pi}{\omega}

\langle u \rangle_t=\frac{\omega}{2\pi}\int_0^{\frac{2\pi}{\omega}} \frac{1}{2}\big(\mathcal{E}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}\cdot\epsilon\mathcal{E}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}+\frac{1}{\mu}\mathcal{B}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}\cdot\mathcal{B}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}-i\omega t}\big) dt

\langle u \rangle_t=\frac{\omega}{2\pi}\int_0^{\frac{2\pi}{\omega}} \frac{1}{2}\big(e^{-2i\omega t}\big)\big(\mathcal{E}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}}\cdot\epsilon\mathcal{E}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}}+\frac{1}{\mu}\mathcal{B}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}}\cdot\mathcal{B}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}}\big) dt

Let A=\big(\mathcal{E}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}}\cdot\epsilon\mathcal{E}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}}+\frac{1}{\mu}\mathcal{B}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}}\cdot\mathcal{B}e^{ik\mathbf{\hat{n}}\cdot\mathbf{x}}\big)

\langle u \rangle_t=\frac{\omega}{2\pi}\int_0^{\frac{2\pi}{\omega}} \frac{1}{2}\big(e^{-2i\omega t}\big)A~dt

Question: Is the integral \int_0^{\frac{2\pi}{\omega}}e^{2i\omega t} dt equal to zero?
I get 1 -1 = 0, but then I cannot prove what I'm proving with this number. :(

Thanks.
 
Physics news on Phys.org
physicsjn said:
Question: Is the integral \int_0^{\frac{2\pi}{\omega}}e^{2i\omega t} dt equal to zero?
I get 1 -1 = 0, but then I cannot prove what I'm proving with this number. :(
Yes it is (apart from a prefactor, it is equivalent to ##\int_0^{2\pi} e^{i t} dt##)

Your expression for E should be real as there are no complex electric fields. If you take the calculate E everywhere, this problem will disappear.
 
  • Like
Likes   Reactions: schrodingerscat11
Actually, since it was due today, I kinda followed a solution in Wikipedia for Poynting vector (attached is the screenshot of Wikipedia solution. But I replaced the expression with the one used for energy density. In my new solution, the integral above was indeed zero, but there were new trems created by all the crossmultiplying done.I am not sure though if I did it right. But I did managed to arrive at the final expression. But thanks anyways. :)
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
Replies
19
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
9
Views
3K