How Do You Express and Evaluate This Integral Using Partial Fractions?

Click For Summary

Discussion Overview

The discussion revolves around the evaluation of the integral \( I = \int \frac{\sqrt{16+5x}}{x} \, dx \) using partial fractions and substitutions. Participants explore different approaches to express the integrand and evaluate the integral, including algebraic manipulation and substitution methods.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant expresses the integrand as \( f = \frac{16}{x} + \frac{5x}{\sqrt{16+5x}} \) and provides an answer from Wolfram Alpha.
  • Another participant suggests a substitution \( 16 + 5x = u^2 \) leading to a transformed integral involving \( u \). They then break down the integral into simpler parts.
  • A later reply reiterates the integration steps and substitution back to the original variable, arriving at a similar expression as the first participant but with different logarithmic terms.
  • One participant questions the notation used by others, suggesting a minor error in the logarithmic terms that led to different answers.
  • Another participant identifies discrepancies in the logarithmic terms provided by different participants, emphasizing the need to confirm whether these differences are merely constant shifts.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the correct form of the logarithmic terms in the final answer, indicating that multiple competing views remain regarding the evaluation of the integral.

Contextual Notes

The discussion highlights potential errors in algebraic manipulation and notation, particularly concerning the logarithmic terms in the final expressions. There are unresolved mathematical steps and assumptions regarding the integration process and the use of partial fractions.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{242 .10.09.8}\\$
$\textsf{Express the integrand as a sum of partial fractions and evaluate integral}$
\begin{align*}\displaystyle
I&=\int f \, dx = \int\frac{\sqrt{16+5x}}{x} \, dx
\end{align*}
\begin{align*}\displaystyle
f&=\frac{\sqrt{16+5x}}{x}
=\frac{\sqrt{16+5x}}{x}\cdot\frac{\sqrt{16+5x}}{\sqrt{16+5x}}\\
&=\frac{16+5x}{x\sqrt{16+5x}}=\frac{16}{x}+\frac{5x}{\sqrt{16+5x}}
\end{align*}
$\textsf{ok, I did something ??}\\$
$\textsf{Answer from}$ $ \textbf{W|A}$
$$\displaystyle I= 2\sqrt{5x+16}+4\log(4-\sqrt{5x+16})-4\log(\sqrt{5x-16}+4)+C$$
 
Last edited:
Physics news on Phys.org
I think what I would do is use the substitution:

$$16+5x=u^2\implies dx=\frac{2}{5}u\,du$$

And now the integral becomes:

$$I=2\int \frac{u^2}{u^2-16}\,du=2\int 1+\frac{2}{u-4}-\frac{2}{u+4}\,du$$
 
$\tiny{7.6.16}$
$\textit{Then}\\$
$$\displaystyle I=2\left[\int 1 \,du +2\int\frac{1}{u-4}\,du
-2\int\frac{1}{u+4}\,du \right]+C$$
$\textit{Then Integrate}\\$
$$I=2u+4\ln(u-4)-4\ln(u+4)+C$$
$\textit{Then substute back in $u=\sqrt{16+5x}$}$
$$\displaystyle I= 2\sqrt{5x+16}+4\log(\sqrt{5x+16}-4)-4\log(\sqrt{5x-16}+4)+C$$
☕
 
Last edited:
karush said:
$\tiny{7.6.16}$
$\textit{Then}\\$
$$\displaystyle I=2\left[\int 1 \,du +2\int\frac{1}{u-4}\,du
-2\int\frac{1}{u+4}\,du \right]+C$$
$\textit{Then Integrate}\\$
$$I=2u+4\ln(u-4)-4\ln(u+4)+C$$
$\textit{Then substute back in $u=\sqrt{16+5x}$}$
$$\displaystyle I= 2\sqrt{5x+16}+4\log(\sqrt{5x+16}-4)-4\log(\sqrt{5x-16}+4)+C$$
☕

Can you explain what minor error in notation used by both you and W|A has led to different answers?
 
karush said:
$\tiny{242 .10.09.8}\\$
$\textsf{Express the integrand as a sum of partial fractions and evaluate integral}$
\begin{align*}\displaystyle
I&=\int f \, dx = \int\frac{\sqrt{16+5x}}{x} \, dx
\end{align*}
\begin{align*}\displaystyle
f&=\frac{\sqrt{16+5x}}{x}
=\frac{\sqrt{16+5x}}{x}\cdot\frac{\sqrt{16+5x}}{\sqrt{16+5x}}\\
&=\frac{16+5x}{x\sqrt{16+5x}}=\frac{16}{x}+\frac{5x}{\sqrt{16+5x}}
\end{align*}
$\textsf{ok, I did something ??}\\$
$\textsf{Answer from}$ $ \textbf{W|A}$
$$\displaystyle I= 2\sqrt{5x+16}+4\log(4-\sqrt{5x+16})-4\log(\sqrt{5x-16}+4)+C$$

If you are going to try to use algebraic manipulation to perform an integral, you MUST do the algebra correctly!

$\displaystyle \begin{align*} \int{ \frac{16 + 5\,x}{x\,\sqrt{16 + 5\,x}}\,\mathrm{d}x } &= \int{ \left( \frac{16}{x\,\sqrt{16 + 5\,x}} + \frac{5\,x}{x\,\sqrt{16 + 5\,x}} \right) \,\mathrm{d}x } \\ &= \int{ \left( \frac{16}{x\,\sqrt{16 + 5\,x}} + \frac{5}{\sqrt{16 + 5\,x}} \right) \,\mathrm{d}x } \\ &= \int{ \frac{16}{x\,\sqrt{16 + 5\,x}} \,\mathrm{d}x } + \int{ \frac{5}{\sqrt{16 + 5\,x}} \,\mathrm{d}x } \\ &= \frac{16}{5} \int{ \frac{5}{x\,\sqrt{16 - 5\,x}} \,\mathrm{d}x } + \int{ \frac{5}{\sqrt{16 + 5\,x}}\,\mathrm{d}x } \end{align*}$

Now let $\displaystyle \begin{align*} u = 16 + 5\,x \implies \mathrm{d}u = 5\,\mathrm{d}x \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \frac{16}{5}\int{ \frac{5}{x\,\sqrt{16 + 5\,x}}\,\mathrm{d}x } + \int{ \frac{5}{\sqrt{16 + 5\,x}} \,\mathrm{d}x } &= \frac{16}{5}\int{ \frac{1}{\left( \frac{u - 16}{5} \right) \,\sqrt{u}}\,\mathrm{d}u } + \int{
\frac{1}{\sqrt{u}} \,\mathrm{d}u } \\ &= 16 \int{ \frac{1}{\left[ \left( \sqrt{u} \right) ^2 - 16 \right] \,\sqrt{u}} \,\mathrm{d}u } + \int{u^{-\frac{1}{2}}\,\mathrm{d}u} \\ &= 32 \int{ \left[ \frac{1}{\left( \sqrt{u} \right) ^2 - 16 } \right] \,\frac{1}{2\,\sqrt{u}} \,\mathrm{d}u } + \frac{u^{\frac{1}{2}}}{\frac{1}{2}} + C_1 \end{align*}$

So now let $\displaystyle \begin{align*} v = \sqrt{u} \implies \mathrm{d}v = \frac{1}{2\,\sqrt{u}}\,\mathrm{d}u \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} 32\int{ \left[ \frac{1}{ \left( \sqrt{u} \right) ^2 - 16 } \right] \,\frac{1}{2\,\sqrt{u}}\,\mathrm{d}u } + \frac{u^{\frac{1}{2}}}{\frac{1}{2}} + C_1 &= 32 \int{ \frac{1}{v^2 - 16} \,\mathrm{d}v } + 2\,\sqrt{u} + C_1 \\ &= 32 \int{ \frac{1}{ \left( v - 4 \right) \left( v + 4 \right) } \,\mathrm{d}v } + 2\,\sqrt{16 + 5\,x} + C_1 \end{align*}$

and now it's in a form you can use Partial Fractions for...
 
MarkFL said:
Can you explain what minor error in notation used by both you and W|A has led to different answers?

I presume it was the 3rd term should be

$$-4\log(\sqrt{5x+16}+4)$$
 
karush said:
I presume it was the 3rd term should be

$$-4\log(\sqrt{5x+16}+4)$$

No, it's the second term, which W|A gives as:

$$4\log(4-\sqrt{5x+16})$$

But, you gave as:

$$4\log(\sqrt{5x-16}-4)$$

You should confirm that these two different terms do not differ by a constant. The issue here is that what should be used is:

$$\int \frac{du}{u}=\ln|u|+C$$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K