How Do You Express and Evaluate This Integral Using Partial Fractions?

Click For Summary
SUMMARY

The integral I = ∫(√(16 + 5x)/x) dx can be expressed using partial fractions as I = 2√(5x + 16) + 4log(√(5x + 16) - 4) - 4log(√(5x - 16) + 4) + C. The correct substitution is 16 + 5x = u², leading to dx = (2/5)u du. A minor error in notation between two contributors resulted in differing logarithmic terms, specifically 4log(4 - √(5x + 16)) versus 4log(√(5x - 16) + 4).

PREREQUISITES
  • Understanding of integral calculus and substitution techniques
  • Familiarity with partial fraction decomposition
  • Knowledge of logarithmic properties and integration
  • Experience with algebraic manipulation of expressions
NEXT STEPS
  • Study the method of partial fractions in integral calculus
  • Learn about substitution techniques in definite and indefinite integrals
  • Explore logarithmic integration and its applications
  • Practice solving integrals involving square roots and rational functions
USEFUL FOR

Students and professionals in mathematics, particularly those studying calculus, as well as educators looking to clarify integral evaluation techniques using partial fractions.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{242 .10.09.8}\\$
$\textsf{Express the integrand as a sum of partial fractions and evaluate integral}$
\begin{align*}\displaystyle
I&=\int f \, dx = \int\frac{\sqrt{16+5x}}{x} \, dx
\end{align*}
\begin{align*}\displaystyle
f&=\frac{\sqrt{16+5x}}{x}
=\frac{\sqrt{16+5x}}{x}\cdot\frac{\sqrt{16+5x}}{\sqrt{16+5x}}\\
&=\frac{16+5x}{x\sqrt{16+5x}}=\frac{16}{x}+\frac{5x}{\sqrt{16+5x}}
\end{align*}
$\textsf{ok, I did something ??}\\$
$\textsf{Answer from}$ $ \textbf{W|A}$
$$\displaystyle I= 2\sqrt{5x+16}+4\log(4-\sqrt{5x+16})-4\log(\sqrt{5x-16}+4)+C$$
 
Last edited:
Physics news on Phys.org
I think what I would do is use the substitution:

$$16+5x=u^2\implies dx=\frac{2}{5}u\,du$$

And now the integral becomes:

$$I=2\int \frac{u^2}{u^2-16}\,du=2\int 1+\frac{2}{u-4}-\frac{2}{u+4}\,du$$
 
$\tiny{7.6.16}$
$\textit{Then}\\$
$$\displaystyle I=2\left[\int 1 \,du +2\int\frac{1}{u-4}\,du
-2\int\frac{1}{u+4}\,du \right]+C$$
$\textit{Then Integrate}\\$
$$I=2u+4\ln(u-4)-4\ln(u+4)+C$$
$\textit{Then substute back in $u=\sqrt{16+5x}$}$
$$\displaystyle I= 2\sqrt{5x+16}+4\log(\sqrt{5x+16}-4)-4\log(\sqrt{5x-16}+4)+C$$
☕
 
Last edited:
karush said:
$\tiny{7.6.16}$
$\textit{Then}\\$
$$\displaystyle I=2\left[\int 1 \,du +2\int\frac{1}{u-4}\,du
-2\int\frac{1}{u+4}\,du \right]+C$$
$\textit{Then Integrate}\\$
$$I=2u+4\ln(u-4)-4\ln(u+4)+C$$
$\textit{Then substute back in $u=\sqrt{16+5x}$}$
$$\displaystyle I= 2\sqrt{5x+16}+4\log(\sqrt{5x+16}-4)-4\log(\sqrt{5x-16}+4)+C$$
☕

Can you explain what minor error in notation used by both you and W|A has led to different answers?
 
karush said:
$\tiny{242 .10.09.8}\\$
$\textsf{Express the integrand as a sum of partial fractions and evaluate integral}$
\begin{align*}\displaystyle
I&=\int f \, dx = \int\frac{\sqrt{16+5x}}{x} \, dx
\end{align*}
\begin{align*}\displaystyle
f&=\frac{\sqrt{16+5x}}{x}
=\frac{\sqrt{16+5x}}{x}\cdot\frac{\sqrt{16+5x}}{\sqrt{16+5x}}\\
&=\frac{16+5x}{x\sqrt{16+5x}}=\frac{16}{x}+\frac{5x}{\sqrt{16+5x}}
\end{align*}
$\textsf{ok, I did something ??}\\$
$\textsf{Answer from}$ $ \textbf{W|A}$
$$\displaystyle I= 2\sqrt{5x+16}+4\log(4-\sqrt{5x+16})-4\log(\sqrt{5x-16}+4)+C$$

If you are going to try to use algebraic manipulation to perform an integral, you MUST do the algebra correctly!

$\displaystyle \begin{align*} \int{ \frac{16 + 5\,x}{x\,\sqrt{16 + 5\,x}}\,\mathrm{d}x } &= \int{ \left( \frac{16}{x\,\sqrt{16 + 5\,x}} + \frac{5\,x}{x\,\sqrt{16 + 5\,x}} \right) \,\mathrm{d}x } \\ &= \int{ \left( \frac{16}{x\,\sqrt{16 + 5\,x}} + \frac{5}{\sqrt{16 + 5\,x}} \right) \,\mathrm{d}x } \\ &= \int{ \frac{16}{x\,\sqrt{16 + 5\,x}} \,\mathrm{d}x } + \int{ \frac{5}{\sqrt{16 + 5\,x}} \,\mathrm{d}x } \\ &= \frac{16}{5} \int{ \frac{5}{x\,\sqrt{16 - 5\,x}} \,\mathrm{d}x } + \int{ \frac{5}{\sqrt{16 + 5\,x}}\,\mathrm{d}x } \end{align*}$

Now let $\displaystyle \begin{align*} u = 16 + 5\,x \implies \mathrm{d}u = 5\,\mathrm{d}x \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \frac{16}{5}\int{ \frac{5}{x\,\sqrt{16 + 5\,x}}\,\mathrm{d}x } + \int{ \frac{5}{\sqrt{16 + 5\,x}} \,\mathrm{d}x } &= \frac{16}{5}\int{ \frac{1}{\left( \frac{u - 16}{5} \right) \,\sqrt{u}}\,\mathrm{d}u } + \int{
\frac{1}{\sqrt{u}} \,\mathrm{d}u } \\ &= 16 \int{ \frac{1}{\left[ \left( \sqrt{u} \right) ^2 - 16 \right] \,\sqrt{u}} \,\mathrm{d}u } + \int{u^{-\frac{1}{2}}\,\mathrm{d}u} \\ &= 32 \int{ \left[ \frac{1}{\left( \sqrt{u} \right) ^2 - 16 } \right] \,\frac{1}{2\,\sqrt{u}} \,\mathrm{d}u } + \frac{u^{\frac{1}{2}}}{\frac{1}{2}} + C_1 \end{align*}$

So now let $\displaystyle \begin{align*} v = \sqrt{u} \implies \mathrm{d}v = \frac{1}{2\,\sqrt{u}}\,\mathrm{d}u \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} 32\int{ \left[ \frac{1}{ \left( \sqrt{u} \right) ^2 - 16 } \right] \,\frac{1}{2\,\sqrt{u}}\,\mathrm{d}u } + \frac{u^{\frac{1}{2}}}{\frac{1}{2}} + C_1 &= 32 \int{ \frac{1}{v^2 - 16} \,\mathrm{d}v } + 2\,\sqrt{u} + C_1 \\ &= 32 \int{ \frac{1}{ \left( v - 4 \right) \left( v + 4 \right) } \,\mathrm{d}v } + 2\,\sqrt{16 + 5\,x} + C_1 \end{align*}$

and now it's in a form you can use Partial Fractions for...
 
MarkFL said:
Can you explain what minor error in notation used by both you and W|A has led to different answers?

I presume it was the 3rd term should be

$$-4\log(\sqrt{5x+16}+4)$$
 
karush said:
I presume it was the 3rd term should be

$$-4\log(\sqrt{5x+16}+4)$$

No, it's the second term, which W|A gives as:

$$4\log(4-\sqrt{5x+16})$$

But, you gave as:

$$4\log(\sqrt{5x-16}-4)$$

You should confirm that these two different terms do not differ by a constant. The issue here is that what should be used is:

$$\int \frac{du}{u}=\ln|u|+C$$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K