MHB How Do You Express and Evaluate This Integral Using Partial Fractions?

Click For Summary
The discussion centers on evaluating the integral I = ∫(√(16 + 5x)/x) dx using partial fractions. Participants express the integrand as a sum of partial fractions, leading to different results due to a minor error in notation regarding logarithmic terms. The correct evaluation involves substituting u = √(16 + 5x) and integrating, resulting in I = 2√(5x + 16) + 4ln|u - 4| - 4ln|u + 4| + C. The discrepancy arises from confusion over the logarithmic expressions, specifically the signs and arguments used in the logarithms. Clarifying these details is crucial for arriving at the correct integral evaluation.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{242 .10.09.8}\\$
$\textsf{Express the integrand as a sum of partial fractions and evaluate integral}$
\begin{align*}\displaystyle
I&=\int f \, dx = \int\frac{\sqrt{16+5x}}{x} \, dx
\end{align*}
\begin{align*}\displaystyle
f&=\frac{\sqrt{16+5x}}{x}
=\frac{\sqrt{16+5x}}{x}\cdot\frac{\sqrt{16+5x}}{\sqrt{16+5x}}\\
&=\frac{16+5x}{x\sqrt{16+5x}}=\frac{16}{x}+\frac{5x}{\sqrt{16+5x}}
\end{align*}
$\textsf{ok, I did something ??}\\$
$\textsf{Answer from}$ $ \textbf{W|A}$
$$\displaystyle I= 2\sqrt{5x+16}+4\log(4-\sqrt{5x+16})-4\log(\sqrt{5x-16}+4)+C$$
 
Last edited:
Physics news on Phys.org
I think what I would do is use the substitution:

$$16+5x=u^2\implies dx=\frac{2}{5}u\,du$$

And now the integral becomes:

$$I=2\int \frac{u^2}{u^2-16}\,du=2\int 1+\frac{2}{u-4}-\frac{2}{u+4}\,du$$
 
$\tiny{7.6.16}$
$\textit{Then}\\$
$$\displaystyle I=2\left[\int 1 \,du +2\int\frac{1}{u-4}\,du
-2\int\frac{1}{u+4}\,du \right]+C$$
$\textit{Then Integrate}\\$
$$I=2u+4\ln(u-4)-4\ln(u+4)+C$$
$\textit{Then substute back in $u=\sqrt{16+5x}$}$
$$\displaystyle I= 2\sqrt{5x+16}+4\log(\sqrt{5x+16}-4)-4\log(\sqrt{5x-16}+4)+C$$
☕
 
Last edited:
karush said:
$\tiny{7.6.16}$
$\textit{Then}\\$
$$\displaystyle I=2\left[\int 1 \,du +2\int\frac{1}{u-4}\,du
-2\int\frac{1}{u+4}\,du \right]+C$$
$\textit{Then Integrate}\\$
$$I=2u+4\ln(u-4)-4\ln(u+4)+C$$
$\textit{Then substute back in $u=\sqrt{16+5x}$}$
$$\displaystyle I= 2\sqrt{5x+16}+4\log(\sqrt{5x+16}-4)-4\log(\sqrt{5x-16}+4)+C$$
☕

Can you explain what minor error in notation used by both you and W|A has led to different answers?
 
karush said:
$\tiny{242 .10.09.8}\\$
$\textsf{Express the integrand as a sum of partial fractions and evaluate integral}$
\begin{align*}\displaystyle
I&=\int f \, dx = \int\frac{\sqrt{16+5x}}{x} \, dx
\end{align*}
\begin{align*}\displaystyle
f&=\frac{\sqrt{16+5x}}{x}
=\frac{\sqrt{16+5x}}{x}\cdot\frac{\sqrt{16+5x}}{\sqrt{16+5x}}\\
&=\frac{16+5x}{x\sqrt{16+5x}}=\frac{16}{x}+\frac{5x}{\sqrt{16+5x}}
\end{align*}
$\textsf{ok, I did something ??}\\$
$\textsf{Answer from}$ $ \textbf{W|A}$
$$\displaystyle I= 2\sqrt{5x+16}+4\log(4-\sqrt{5x+16})-4\log(\sqrt{5x-16}+4)+C$$

If you are going to try to use algebraic manipulation to perform an integral, you MUST do the algebra correctly!

$\displaystyle \begin{align*} \int{ \frac{16 + 5\,x}{x\,\sqrt{16 + 5\,x}}\,\mathrm{d}x } &= \int{ \left( \frac{16}{x\,\sqrt{16 + 5\,x}} + \frac{5\,x}{x\,\sqrt{16 + 5\,x}} \right) \,\mathrm{d}x } \\ &= \int{ \left( \frac{16}{x\,\sqrt{16 + 5\,x}} + \frac{5}{\sqrt{16 + 5\,x}} \right) \,\mathrm{d}x } \\ &= \int{ \frac{16}{x\,\sqrt{16 + 5\,x}} \,\mathrm{d}x } + \int{ \frac{5}{\sqrt{16 + 5\,x}} \,\mathrm{d}x } \\ &= \frac{16}{5} \int{ \frac{5}{x\,\sqrt{16 - 5\,x}} \,\mathrm{d}x } + \int{ \frac{5}{\sqrt{16 + 5\,x}}\,\mathrm{d}x } \end{align*}$

Now let $\displaystyle \begin{align*} u = 16 + 5\,x \implies \mathrm{d}u = 5\,\mathrm{d}x \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \frac{16}{5}\int{ \frac{5}{x\,\sqrt{16 + 5\,x}}\,\mathrm{d}x } + \int{ \frac{5}{\sqrt{16 + 5\,x}} \,\mathrm{d}x } &= \frac{16}{5}\int{ \frac{1}{\left( \frac{u - 16}{5} \right) \,\sqrt{u}}\,\mathrm{d}u } + \int{
\frac{1}{\sqrt{u}} \,\mathrm{d}u } \\ &= 16 \int{ \frac{1}{\left[ \left( \sqrt{u} \right) ^2 - 16 \right] \,\sqrt{u}} \,\mathrm{d}u } + \int{u^{-\frac{1}{2}}\,\mathrm{d}u} \\ &= 32 \int{ \left[ \frac{1}{\left( \sqrt{u} \right) ^2 - 16 } \right] \,\frac{1}{2\,\sqrt{u}} \,\mathrm{d}u } + \frac{u^{\frac{1}{2}}}{\frac{1}{2}} + C_1 \end{align*}$

So now let $\displaystyle \begin{align*} v = \sqrt{u} \implies \mathrm{d}v = \frac{1}{2\,\sqrt{u}}\,\mathrm{d}u \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} 32\int{ \left[ \frac{1}{ \left( \sqrt{u} \right) ^2 - 16 } \right] \,\frac{1}{2\,\sqrt{u}}\,\mathrm{d}u } + \frac{u^{\frac{1}{2}}}{\frac{1}{2}} + C_1 &= 32 \int{ \frac{1}{v^2 - 16} \,\mathrm{d}v } + 2\,\sqrt{u} + C_1 \\ &= 32 \int{ \frac{1}{ \left( v - 4 \right) \left( v + 4 \right) } \,\mathrm{d}v } + 2\,\sqrt{16 + 5\,x} + C_1 \end{align*}$

and now it's in a form you can use Partial Fractions for...
 
MarkFL said:
Can you explain what minor error in notation used by both you and W|A has led to different answers?

I presume it was the 3rd term should be

$$-4\log(\sqrt{5x+16}+4)$$
 
karush said:
I presume it was the 3rd term should be

$$-4\log(\sqrt{5x+16}+4)$$

No, it's the second term, which W|A gives as:

$$4\log(4-\sqrt{5x+16})$$

But, you gave as:

$$4\log(\sqrt{5x-16}-4)$$

You should confirm that these two different terms do not differ by a constant. The issue here is that what should be used is:

$$\int \frac{du}{u}=\ln|u|+C$$
 

Similar threads

Replies
3
Views
2K
Replies
6
Views
2K
Replies
8
Views
2K
Replies
4
Views
1K
Replies
3
Views
2K
Replies
4
Views
2K
Replies
3
Views
2K