MHB How Do You Express Vectors in a Rectangle Using Midpoint Coordinates?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Rectangle Vectors
Click For Summary
In the discussion, participants explore expressing vectors in a rectangle, specifically using midpoint coordinates. For vector \(\overrightarrow{CD}\), it is derived as \(\overrightarrow{OD} - \overrightarrow{OC}\). The vector \(\overrightarrow{OA}\) is expressed as half of \(\overrightarrow{CD}\), resulting in \(\frac{1}{2}(\overrightarrow{OD} - \overrightarrow{OC})\). Lastly, \(\overrightarrow{AD}\) is calculated to be \(\frac{1}{2}(\overrightarrow{OD} + \overrightarrow{OC})\). The discussion emphasizes the relationships between these vectors in the context of the rectangle's geometry.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
View attachment 1019$$ABCD$$ is a rectangle and $$O$$ is the midpoint of $$[AB]$$.

Express each of the following vectors in terms of $$\overrightarrow{OC}$$ and $$\overrightarrow{OD}$$
(a) $$\overrightarrow{CD} $$

ok I am fairly new to vectors and know this is a simple problem but still need some input
on (a) I thot this would be a vector difference but this would make $$\overrightarrow{CD} = 0$$

(b) $$\overrightarrow{OA}$$
(c) $$\overrightarrow{AD}$$
 
Last edited:
Mathematics news on Phys.org
Re: vectors inside a rectangle

Hello, karush!

View attachment 1019

$$ABCD$$ is a rectangle and $$O$$ is the midpoint of $$[AB]$$.

Express each of the following vectors in terms of $$\overrightarrow{OC}$$ and $$\overrightarrow{OD}$$

(a) $$\overrightarrow{CD} $$
\overrightarrow{CD} \;=\;\overrightarrow{CO} + \overrightarrow{OD} \;=\;-\overrightarrow{OC} + \overrightarrow{OD} \;=\;\overrightarrow{OD} - \overrightarrow{OC}
(b) $$\overrightarrow{OA}$$
\overrightarrow{OA} \;=\;\tfrac{1}{2}\overrightarrow{CD} \;=\;\tfrac{1}{2}\left(\overrightarrow{OD} - \overrightarrow{OC}\right)
(c) $$\overrightarrow{AD}$$
\overrightarrow{AD} \;=\;\overrightarrow{AO} + \overrightarrow{OD} \;=\;-\overrightarrow{OA} + \overrightarrow{OD} \;=\;\overrightarrow{OD} - \overrightarrow{OA}

. . . .=\;\overrightarrow{OD} - \tfrac{1}{2}\left(\overrightarrow{OD} - \overrightarrow{OC}\right) \;=\;\overrightarrow{OD} - \tfrac{1}{2}\overrightarrow{OD} + \tfrac{1}{2}\overrightarrow{OC}

. . . .=\;\tfrac{1}{2}\overrightarrow{OD} + \tfrac{1}{2}\overrightarrow{OC} \;=\;\tfrac{1}{2}\left(\overrightarrow{OD} + \overrightarrow{OC}\right)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
6K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 20 ·
Replies
20
Views
3K