How Do You Express Vectors in a Rectangle Using Midpoint Coordinates?

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Rectangle Vectors
Click For Summary
SUMMARY

This discussion focuses on expressing vectors within a rectangle using midpoint coordinates. The vectors $$\overrightarrow{CD}$$, $$\overrightarrow{OA}$$, and $$\overrightarrow{AD}$$ are expressed in terms of the vectors $$\overrightarrow{OC}$$ and $$\overrightarrow{OD}$$. The solutions provided are: $$\overrightarrow{CD} = \overrightarrow{OD} - \overrightarrow{OC}$$, $$\overrightarrow{OA} = \tfrac{1}{2}(\overrightarrow{OD} - \overrightarrow{OC})$$, and $$\overrightarrow{AD} = \tfrac{1}{2}(\overrightarrow{OD} + \overrightarrow{OC})$$. These expressions illustrate the relationships between the vectors in the context of rectangle geometry.

PREREQUISITES
  • Understanding of vector notation and operations
  • Familiarity with geometric concepts related to rectangles
  • Knowledge of midpoint coordinates in geometry
  • Basic algebraic manipulation of vector equations
NEXT STEPS
  • Study vector operations in Euclidean geometry
  • Learn about vector representation in different coordinate systems
  • Explore applications of midpoint coordinates in physics and engineering
  • Investigate advanced vector calculus techniques
USEFUL FOR

Students and educators in geometry, mathematicians focusing on vector analysis, and anyone interested in the geometric interpretation of vectors within rectangular frameworks.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
View attachment 1019$$ABCD$$ is a rectangle and $$O$$ is the midpoint of $$[AB]$$.

Express each of the following vectors in terms of $$\overrightarrow{OC}$$ and $$\overrightarrow{OD}$$
(a) $$\overrightarrow{CD} $$

ok I am fairly new to vectors and know this is a simple problem but still need some input
on (a) I thot this would be a vector difference but this would make $$\overrightarrow{CD} = 0$$

(b) $$\overrightarrow{OA}$$
(c) $$\overrightarrow{AD}$$
 
Last edited:
Physics news on Phys.org
Re: vectors inside a rectangle

Hello, karush!

View attachment 1019

$$ABCD$$ is a rectangle and $$O$$ is the midpoint of $$[AB]$$.

Express each of the following vectors in terms of $$\overrightarrow{OC}$$ and $$\overrightarrow{OD}$$

(a) $$\overrightarrow{CD} $$
\overrightarrow{CD} \;=\;\overrightarrow{CO} + \overrightarrow{OD} \;=\;-\overrightarrow{OC} + \overrightarrow{OD} \;=\;\overrightarrow{OD} - \overrightarrow{OC}
(b) $$\overrightarrow{OA}$$
\overrightarrow{OA} \;=\;\tfrac{1}{2}\overrightarrow{CD} \;=\;\tfrac{1}{2}\left(\overrightarrow{OD} - \overrightarrow{OC}\right)
(c) $$\overrightarrow{AD}$$
\overrightarrow{AD} \;=\;\overrightarrow{AO} + \overrightarrow{OD} \;=\;-\overrightarrow{OA} + \overrightarrow{OD} \;=\;\overrightarrow{OD} - \overrightarrow{OA}

. . . .=\;\overrightarrow{OD} - \tfrac{1}{2}\left(\overrightarrow{OD} - \overrightarrow{OC}\right) \;=\;\overrightarrow{OD} - \tfrac{1}{2}\overrightarrow{OD} + \tfrac{1}{2}\overrightarrow{OC}

. . . .=\;\tfrac{1}{2}\overrightarrow{OD} + \tfrac{1}{2}\overrightarrow{OC} \;=\;\tfrac{1}{2}\left(\overrightarrow{OD} + \overrightarrow{OC}\right)
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
6K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 20 ·
Replies
20
Views
3K