MHB How do you factor expressions like 3(x + h)^4 - 48(x + h)^2?

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Expression
Click For Summary
The expression 3(x + h)^4 - 48(x + h)^2 can be factored by first extracting 3(x + h)^2, resulting in 3(x + h)^2[(x + h)^2 - 16]. This further simplifies to 3(x + h)^2[(x + h) - 4][(x + h) + 4]. The discussion highlights the complexity of factoring problems found in Precalculus by David Cohen, particularly in Section 1.3, which includes many challenging examples. Participants express a commitment to sharing additional tricky factoring problems in future posts. The focus remains on mastering these advanced factoring techniques.
mathdad
Messages
1,280
Reaction score
0
Precalculus by David Cohen, 3rd Edition
Chapter 1, Section 1.3.
Question 32c.

Factor the expression.

3(x + h)^4 - 48(x + h)^2

Solution:

Factor out 3(x + h)^2.

3(x + h)^2[(x + h)^2 - 16]

Simplify the quantity in the brackets.

3(x + h)^2[(x + h) - 4][(x - h) + 4]

Is this right?
 
Mathematics news on Phys.org
RTCNTC said:
Precalculus by David Cohen, 3rd Edition
Chapter 1, Section 1.3.
Question 32c.

Factor the expression.

3(x + h)^4 - 48(x + h)^2

Solution:

Factor out 3(x + h)^2.

3(x + h)^2[(x + h)^2 - 16]

Simplify the quantity in the brackets.

3(x + h)^2[(x + h) - 4][(x - h) + 4]

Is this right?

right
 
Section 1.3 has what appears to be endless factoring questions. I will post many factoring problems in the coming days. I am talking about "tricky" factoring problems not factor 3a + a.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K