MHB How Do You Integrate (1 - e^(2x)) / e^x?

  • Thread starter Thread starter renyikouniao
  • Start date Start date
  • Tags Tags
    Integration
renyikouniao
Messages
41
Reaction score
0
Question:Integrate (1-e^(2x))/e^x dx
My solution:=integrate 1/e^x-e^(2x)/e^x
=integrate e^(-x)-e^x
This is where i am stuck,I don't know how to integrate e^(-x)
 
Physics news on Phys.org
renyikouniao said:
Question:Integrate (1-e^(2x))/e^x dx
My solution:=integrate 1/e^x-e^(2x)/e^x
=integrate e^(-x)-e^x
This is where i am stuck,I don't know how to integrate e^(-x)

Hi renyikouniao, (Wave)

Let $u=-x$ and $du=-dx$. We can now transform this integral into $$\int -e^{u}du$$ and then back-substitute. What do you get when you do that?
 
Jameson said:
Hi renyikouniao, (Wave)

Let $u=-x$ and $du=-dx$. We can now transform this integral into $$\int -e^{u}du$$ and then back-substitute. What do you get when you do that?
That make sence!Thank you very much:o
 
renyikouniao said:
Question:Integrate (1-e^(2x))/e^x dx
My solution:=integrate 1/e^x-e^(2x)/e^x
=integrate e^(-x)-e^x
This is where i am stuck,I don't know how to integrate e^(-x)

[math]\displaystyle \begin{align*} \int{\frac{1 - e^{2x}}{e^x}\,dx} &= \int{\frac{e^x \left( 1 - e^{2x} \right) }{e^{2x}}\,dx} \end{align*}[/math]

Now make the substitution [math]\displaystyle \begin{align*} u = e^x \implies du = e^x\,dx \end{align*}[/math] and the integral becomes

[math]\displaystyle \begin{align*} \int{\frac{e^x\left( 1 - e^{2x} \right) }{e^{2x}}\,dx} &= \int{\frac{1 - u^2}{u^2}\,du} \\ &= \int{\frac{1}{u^2} - 1 \, du} \\ &= \int{u^{-2} - 1\,du} \\ &= \frac{u^{-1}}{-1} - u + C \\ &= -\left( e^x \right) ^{-1} - e^x + C \\ &= -e^{-x} - e^x + C \end{align*}[/math]
 
Another approach is to rewrite the integrand as follows:

$$\frac{1-e^{2x}}{e^x}\cdot\frac{e^{-x}}{e^{-x}}=e^{-x}-e^x=-2\sinh(x)$$

and now we have:

$$-2\int\sinh(x)\,dx=-2\cosh(x)+C=-e^x-e^{-x}+C$$
 
Back
Top