How Do You Integrate Complex Polynomial Expressions?

  • Context: MHB 
  • Thread starter Thread starter paulmdrdo1
  • Start date Start date
  • Tags Tags
    Integration Polynomial
Click For Summary
SUMMARY

This discussion focuses on integrating complex polynomial expressions, specifically the integrals ∫(x² - 4x + 4)^(4/3) and ∫(1 + 1/3x)^(1/2)dx/x². The first integral simplifies to ∫(x - 2)^(8/3)dx after recognizing that x² - 4x + 4 factors to (x - 2)². The second integral is solved using the substitution u = 1 + 1/3x, leading to the result -2(1 + 1/3x)^(3/2) + C. Clear substitution techniques and polynomial factoring are essential for solving these integrals.

PREREQUISITES
  • Understanding of polynomial factoring
  • Knowledge of integral calculus
  • Familiarity with substitution methods in integration
  • Ability to manipulate algebraic expressions
NEXT STEPS
  • Study polynomial integration techniques
  • Learn advanced substitution methods in calculus
  • Explore integration of rational functions
  • Practice solving integrals involving fractional exponents
USEFUL FOR

Students and educators in mathematics, particularly those focusing on calculus and integral techniques, as well as anyone looking to enhance their skills in solving complex polynomial integrals.

paulmdrdo1
Messages
382
Reaction score
0
1. ∫(x2-4x+4)4/3
2. ∫(1+1/3x)1/2dx/x2

this is what i do for number 1.

∫(x2-2)8/3

now I'm stuck.

please help!
 
Physics news on Phys.org
paulmdrdo said:
1. ∫(x2-4x+4)4/3
2. ∫(1+1/3x)1/2dx/x2
3. ∫(3+s)1/2(s+1)2ds

this is what i do for number 1.

∫(x2-2)8/3

now I'm stuck.

please help!

That's a good start, but notice that [math]\displaystyle \begin{align*} x^2 - 4x + 4 = \left( x - 2 \right) ^2 \end{align*}[/math], not [math]\displaystyle \begin{align*} \left( x^2 - 2 \right) ^2 \end{align*}[/math], so...

[math]\displaystyle \begin{align*} \int{ \left( x^2 - 4x + 4 \right) ^{\frac{4}{3}}\,dx} &= \int{ \left[ \left( x - 2 \right) ^2 \right] ^{\frac{4}{3}} \, dx} \\ &= \int{ \left( x - 2 \right) ^{\frac{8}{3}} \, dx} \end{align*}[/math]

Now let [math]\displaystyle \begin{align*} u = x - 2 \implies du = dx \end{align*}[/math] and the integral becomes [math]\displaystyle \begin{align*} \int{ u^{\frac{8}{3}}\,du} \end{align*}[/math]. I'm sure you can go from here.What have you tried with the other questions?
 
Hello, paulmdrdo!

\displaystyle [2]\;\;\int \left(1+\frac{1}{3x}\right)^{\frac{1}{2}}\,\frac{dx}{x^2}
\text{Let }\,u \:=\:1 + \frac{1}{3x} \:=\:1 + \frac{1}{3}x^{-1}

\text{Then: }\,du \:=\:-\frac{1}{3}x^{-2}dx \quad\Rightarrow\quad \frac{dx}{x^2} \:=\:-3\,du

\text{Substitute: }\:\int u^{\frac{1}{2}}(-3\,du) \;=\;-3\int u^{\frac{1}{2}}\,du

. . . . . . . =\;-3\cdot\tfrac{2}{3}u^{\frac{3}{2}} + C \;=\;-2u^{\frac{3}{2}} + C

\text{Back-substitute: }\:-2\left(1 + \frac{1}{3x}\right)^{\frac{3}{2}} + C
 

Similar threads

Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 48 ·
2
Replies
48
Views
4K