How Do You Integrate $\int \frac{1}{1-e^x} dx$ with Substitution?

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Dx
Click For Summary
SUMMARY

The integral $\int \frac{1}{1-e^x} dx$ can be solved using substitution with $u=1-e^x$ and $du=-e^x dx$. The integral simplifies to $\int \frac{1}{u(u-1)} du$, which can be decomposed into partial fractions yielding $-\ln |1-e^x| + x + C$. An alternative method involves expanding the integrand into a series, leading to the same result, $x - \ln(1 - e^x) + C$. Both methods confirm the equivalence of $\ln |1-e^x|$ and $\ln |e^x-1|$.

PREREQUISITES
  • Understanding of integral calculus
  • Familiarity with substitution methods in integration
  • Knowledge of partial fraction decomposition
  • Basic concepts of logarithmic functions
NEXT STEPS
  • Study advanced techniques in integration, such as integration by parts
  • Explore series expansions and their applications in calculus
  • Learn about the properties of logarithmic functions in calculus
  • Investigate the convergence of series related to exponential functions
USEFUL FOR

Students and professionals in mathematics, particularly those focused on calculus, integral equations, and mathematical analysis.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\int \frac{1}{1-e^x} dx$
$u=1-e^x,\ du=-e^x dx$
Not sure of next step
 
Physics news on Phys.org
karush said:
$\int \frac{1}{1-e^x} dx$
$u=1-e^x,\ du=-e^x dx$
Not sure of next step
Try this:
[math]\int \frac{1}{1 - e^x}~dx = \int \frac{1 - e^x + e^x}{1 - e^x}~dx[/math]

[math]= \int \frac{1 - e^x}{1 - e^x}~dx + \int \frac{e^x}{1 - e^x}~dx[/math]

-Dan
 
karush said:
$\int \frac{1}{1-e^x} dx$
$u=1-e^x,\ du=-e^x dx$
Not sure of next step

$$u=1-e^x \\ du=-e^x dx \Rightarrow dx=-\frac{du}{e^x}=\frac{du}{u-1}$$
$$\int \frac{1}{1-e^x}dx=\int \frac{1}{u} \frac{1}{u-1}du=\int \frac{1}{u(u-1)}du=(*)$$

$$\frac{1}{u(u-1)}=\frac{A}{u}+\frac{B}{u-1}=\frac{A(u-1)+Bu}{u(u-1)}=\frac{(A+B)u-A}{u(u-1)}$$

So,it must be:

$$A+B=0 \Rightarrow B=-A \\ -A=1 \Rightarrow A=-1 \\ B=-A=1$$

$$(*)=\int \left ( -\frac{1}{u}+\frac{1}{u-1}\right )du=- \ln | u |+\ln{|u-1|}+c \\ =- \ln |1-e^x|+\ln |1-e^x-1|+c=-\ln |1-e^x|+x+c$$
 
Cool trick ... Thanks 4 help...I got
$$x-ln|e^x-1|+C$$
 
karush said:
Cool trick ... Thanks 4 help...I got
$$x-ln|e^x-1|+C$$

Nice! So, we got the same result, since $\ln |1-e^x|=\ln |e^x-1|$.. (Smirk)
 
There are worse methods of doing it :

$$\begin{aligned}\int \frac{1}{1-e^x}, \mathrm{d}x = \int \left ( 1 + e^x + e^{2x} + e^{3x} + \cdots \right ) \, \mathrm{d}x &= \left ( x + e^x + \frac{e^{2x}}{2} + \frac{e^{3x}}{3} + \cdots \right ) + C \\ &= x + \sum_{n = 1}^\infty \frac{(e^x)^n}{n} + C \\ &= x - \log(1 - e^x) + C\end{aligned}$$

So, yes, karush, your answer agrees with mine.
 
Last edited:
This is what I would do:

$$\int\frac{1}{1-e^x}\,dx=-\int\frac{-e^{-x}}{e^{-x}-1}\,dx=-\ln\left|e^{-x}-1\right|+C$$
 
MarkFL said:
This is what I would do:

$$\int\frac{1}{1-e^x}\,dx=-\int\frac{-e^{-x}}{e^{-x}-1}\,dx=-\ln\left|e^{-x}-1\right|+C$$
Isn't there another x in the answer?
 
karush said:
Isn't there another x in the answer?

Try rewriting the log argument in terms of $e^x$ and see what happens...:D
 
  • #10
OK I see the x appears...
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K