MHB How Do You Prove a Specific Fourier Transform Property?

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Could you give me a hint how to prove the following property of the Fourier transform, when $F[f(x)]=\widetilde{f}(x)$, where $F[f(x)]$ is the Fourier transform of $f(x)$?

$$F[ \widetilde{f}(x) ]= \frac{f(-k)}{2 \pi}$$

We know that: $ \widetilde{f}(k)=\int_{- \infty}^{+ \infty}{ {f}(x) e^{-i k x}}dx$ and $f(x)=\frac{1}{2 \pi}\int_{- \infty}^{+ \infty}{ \widetilde{f}(k) e^{i k x}}dx$.

I thought the following:

$F[\widetilde{f}(x)]=\int_{-\infty}^{+\infty}{\widetilde{f}(x)e^{-ikx}}dx=2 \pi \frac{1}{2 \pi} \int_{-\infty}^{+\infty}{\widetilde{f}(x)e^{ix(-k)}}dx=2 \pi f(-k)$

But then $2 \pi$ would be at the numerator..
Have I done something wrong or can we not prove this in this way?

Then an other idea is:
$\widetilde{f}(x)=\int_{-\infty}^{+\infty}{\widetilde{f}(k)e^{-ikx}}dk \Rightarrow F[\widetilde{f}(x)]=F[\int_{-\infty}^{+\infty}{\widetilde{f}(k)e^{-ikx}}dk]=\int_{-\infty}^{+\infty}{\int_{-\infty}^{+\infty}{\widetilde{f}(k)e^{-2ikx}}}dkdx$
How could we continue?

Or is there an other way to prove the property?? (Worried)
 
Physics news on Phys.org
mathmari said:
Hey! :o

Could you give me a hint how to prove the following property of the Fourier transform, when $F[f(x)]=\widetilde{f}(x)$, where $F[f(x)]$ is the Fourier transform of $f(x)$?

$$F[ \widetilde{f}(x) ]= \frac{f(-k)}{2 \pi}$$

We know that: $ \widetilde{f}(k)=\int_{- \infty}^{+ \infty}{ {f}(x) e^{-i k x}}dx$ and $f(x)=\frac{1}{2 \pi}\int_{- \infty}^{+ \infty}{ \widetilde{f}(k) e^{i k x}}dx$.

I thought the following:

$F[\widetilde{f}(x)]=\int_{-\infty}^{+\infty}{\widetilde{f}(x)e^{-ikx}}dx=2 \pi \frac{1}{2 \pi} \int_{-\infty}^{+\infty}{\widetilde{f}(x)e^{ix(-k)}}dx=2 \pi f(-k)$

But then $2 \pi$ would be at the numerator..
Have I done something wrong or can we not prove this in this way?

Hi! :)

That is the correct way to prove it and your result is the right result.
None of the other common versions of the Fourier transform will give the result in your problem statement.
So it appears that your problem statement is wrong.

You can see the same result in this wiki table in the row labeled 105.
Your version of the Fourier transform is the last Fourier column in the table.
Then an other idea is:
$\widetilde{f}(x)=\int_{-\infty}^{+\infty}{\widetilde{f}(k)e^{-ikx}}dk \Rightarrow F[\widetilde{f}(x)]=F[\int_{-\infty}^{+\infty}{\widetilde{f}(k)e^{-ikx}}dk]=\int_{-\infty}^{+\infty}{\int_{-\infty}^{+\infty}{\widetilde{f}(k)e^{-2ikx}}}dkdx$
How could we continue?

This is not correct.
It should be:
\begin{aligned}\widetilde{f}(x)&=\int_{-\infty}^{+\infty}{f(k')e^{-ik'x}}dk' \\
\Rightarrow F[\widetilde{f}(x)]
&=F[\int_{-\infty}^{+\infty} f(k')e^{-ik'x} dk'] \\
&=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(k')e^{-ik'x} e^{-ikx} dk'dx \\
&=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(k')e^{-i(k'+k)x} dk'dx
\end{aligned}

Anyway, I do not see how you can continue with that.
 
I like Serena said:
Hi! :)

That is the correct way to prove it and your result is the right result.
None of the other common versions of the Fourier transform will give the result in your problem statement.
So it appears that your problem statement is wrong.

You can see the same result in this wiki table in the row labeled 105.
Your version of the Fourier transform is the last Fourier column in the table.

This is not correct.
It should be:
\begin{aligned}\widetilde{f}(x)&=\int_{-\infty}^{+\infty}{f(k')e^{-ik'x}}dk' \\
\Rightarrow F[\widetilde{f}(x)]
&=F[\int_{-\infty}^{+\infty} f(k')e^{-ik'x} dk'] \\
&=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(k')e^{-ik'x} e^{-ikx} dk'dx \\
&=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(k')e^{-i(k'+k)x} dk'dx
\end{aligned}

Anyway, I do not see how you can continue with that.

Ok! (Smile)
Thank you very much! (Smirk)
 
I realized that actually we can continue from here using the Dirac delta function:
\begin{aligned}
F[\widetilde{f}(x)]
&=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(k')e^{-i(k'+k)x} dk'dx \\
&=\int_{-\infty}^{+\infty} dk' f(k') \int_{-\infty}^{+\infty} e^{-i(k'+k)x} dx \\
&=\int_{-\infty}^{+\infty} dk' f(k')\ 2\pi\ \delta(k'+k) \\
&= 2\pi f(-k)
\end{aligned}
 
I like Serena said:
I realized that actually we can continue from here using the Dirac delta function:
\begin{aligned}
F[\widetilde{f}(x)]
&=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(k')e^{-i(k'+k)x} dk'dx \\
&=\int_{-\infty}^{+\infty} dk' f(k') \int_{-\infty}^{+\infty} e^{-i(k'+k)x} dx \\
&=\int_{-\infty}^{+\infty} dk' f(k')\ 2\pi\ \delta(k'+k) \\
&= 2\pi f(-k)
\end{aligned}

Ok! (flower)
Thanks a lot! (Smirk)
 
I have the equation ##F^x=m\frac {d}{dt}(\gamma v^x)##, where ##\gamma## is the Lorentz factor, and ##x## is a superscript, not an exponent. In my textbook the solution is given as ##\frac {F^x}{m}t=\frac {v^x}{\sqrt {1-v^{x^2}/c^2}}##. What bothers me is, when I separate the variables I get ##\frac {F^x}{m}dt=d(\gamma v^x)##. Can I simply consider ##d(\gamma v^x)## the variable of integration without any further considerations? Can I simply make the substitution ##\gamma v^x = u## and then...

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
Replies
7
Views
2K
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K