How Do You Prove a Specific Fourier Transform Property?

Click For Summary
SUMMARY

The discussion focuses on proving the property of the Fourier transform, specifically that \( F[\widetilde{f}(x)] = \frac{f(-k)}{2\pi} \). Participants clarify the definitions of the Fourier transform and its inverse, \( \widetilde{f}(k) = \int_{-\infty}^{+\infty} f(x)e^{-ikx}dx \) and \( f(x) = \frac{1}{2\pi}\int_{-\infty}^{+\infty} \widetilde{f}(k)e^{ikx}dk \). The correct proof involves using the Dirac delta function to show that \( F[\widetilde{f}(x)] = 2\pi f(-k) \), confirming the original property stated. The discussion concludes that the initial problem statement was incorrect.

PREREQUISITES
  • Understanding of Fourier transform definitions and properties
  • Familiarity with the Dirac delta function
  • Knowledge of integration techniques in complex analysis
  • Ability to manipulate and interpret mathematical expressions involving integrals
NEXT STEPS
  • Study the properties of the Fourier transform and its inverse
  • Learn about the Dirac delta function and its applications in Fourier analysis
  • Explore common Fourier transform pairs and their derivations
  • Investigate the implications of Fourier transform properties in signal processing
USEFUL FOR

Mathematicians, physicists, engineers, and students studying signal processing or applied mathematics who need to understand Fourier transform properties and their proofs.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Could you give me a hint how to prove the following property of the Fourier transform, when $F[f(x)]=\widetilde{f}(x)$, where $F[f(x)]$ is the Fourier transform of $f(x)$?

$$F[ \widetilde{f}(x) ]= \frac{f(-k)}{2 \pi}$$

We know that: $ \widetilde{f}(k)=\int_{- \infty}^{+ \infty}{ {f}(x) e^{-i k x}}dx$ and $f(x)=\frac{1}{2 \pi}\int_{- \infty}^{+ \infty}{ \widetilde{f}(k) e^{i k x}}dx$.

I thought the following:

$F[\widetilde{f}(x)]=\int_{-\infty}^{+\infty}{\widetilde{f}(x)e^{-ikx}}dx=2 \pi \frac{1}{2 \pi} \int_{-\infty}^{+\infty}{\widetilde{f}(x)e^{ix(-k)}}dx=2 \pi f(-k)$

But then $2 \pi$ would be at the numerator..
Have I done something wrong or can we not prove this in this way?

Then an other idea is:
$\widetilde{f}(x)=\int_{-\infty}^{+\infty}{\widetilde{f}(k)e^{-ikx}}dk \Rightarrow F[\widetilde{f}(x)]=F[\int_{-\infty}^{+\infty}{\widetilde{f}(k)e^{-ikx}}dk]=\int_{-\infty}^{+\infty}{\int_{-\infty}^{+\infty}{\widetilde{f}(k)e^{-2ikx}}}dkdx$
How could we continue?

Or is there an other way to prove the property?? (Worried)
 
Physics news on Phys.org
mathmari said:
Hey! :o

Could you give me a hint how to prove the following property of the Fourier transform, when $F[f(x)]=\widetilde{f}(x)$, where $F[f(x)]$ is the Fourier transform of $f(x)$?

$$F[ \widetilde{f}(x) ]= \frac{f(-k)}{2 \pi}$$

We know that: $ \widetilde{f}(k)=\int_{- \infty}^{+ \infty}{ {f}(x) e^{-i k x}}dx$ and $f(x)=\frac{1}{2 \pi}\int_{- \infty}^{+ \infty}{ \widetilde{f}(k) e^{i k x}}dx$.

I thought the following:

$F[\widetilde{f}(x)]=\int_{-\infty}^{+\infty}{\widetilde{f}(x)e^{-ikx}}dx=2 \pi \frac{1}{2 \pi} \int_{-\infty}^{+\infty}{\widetilde{f}(x)e^{ix(-k)}}dx=2 \pi f(-k)$

But then $2 \pi$ would be at the numerator..
Have I done something wrong or can we not prove this in this way?

Hi! :)

That is the correct way to prove it and your result is the right result.
None of the other common versions of the Fourier transform will give the result in your problem statement.
So it appears that your problem statement is wrong.

You can see the same result in this wiki table in the row labeled 105.
Your version of the Fourier transform is the last Fourier column in the table.
Then an other idea is:
$\widetilde{f}(x)=\int_{-\infty}^{+\infty}{\widetilde{f}(k)e^{-ikx}}dk \Rightarrow F[\widetilde{f}(x)]=F[\int_{-\infty}^{+\infty}{\widetilde{f}(k)e^{-ikx}}dk]=\int_{-\infty}^{+\infty}{\int_{-\infty}^{+\infty}{\widetilde{f}(k)e^{-2ikx}}}dkdx$
How could we continue?

This is not correct.
It should be:
\begin{aligned}\widetilde{f}(x)&=\int_{-\infty}^{+\infty}{f(k')e^{-ik'x}}dk' \\
\Rightarrow F[\widetilde{f}(x)]
&=F[\int_{-\infty}^{+\infty} f(k')e^{-ik'x} dk'] \\
&=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(k')e^{-ik'x} e^{-ikx} dk'dx \\
&=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(k')e^{-i(k'+k)x} dk'dx
\end{aligned}

Anyway, I do not see how you can continue with that.
 
I like Serena said:
Hi! :)

That is the correct way to prove it and your result is the right result.
None of the other common versions of the Fourier transform will give the result in your problem statement.
So it appears that your problem statement is wrong.

You can see the same result in this wiki table in the row labeled 105.
Your version of the Fourier transform is the last Fourier column in the table.

This is not correct.
It should be:
\begin{aligned}\widetilde{f}(x)&=\int_{-\infty}^{+\infty}{f(k')e^{-ik'x}}dk' \\
\Rightarrow F[\widetilde{f}(x)]
&=F[\int_{-\infty}^{+\infty} f(k')e^{-ik'x} dk'] \\
&=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(k')e^{-ik'x} e^{-ikx} dk'dx \\
&=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(k')e^{-i(k'+k)x} dk'dx
\end{aligned}

Anyway, I do not see how you can continue with that.

Ok! (Smile)
Thank you very much! (Smirk)
 
I realized that actually we can continue from here using the Dirac delta function:
\begin{aligned}
F[\widetilde{f}(x)]
&=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(k')e^{-i(k'+k)x} dk'dx \\
&=\int_{-\infty}^{+\infty} dk' f(k') \int_{-\infty}^{+\infty} e^{-i(k'+k)x} dx \\
&=\int_{-\infty}^{+\infty} dk' f(k')\ 2\pi\ \delta(k'+k) \\
&= 2\pi f(-k)
\end{aligned}
 
I like Serena said:
I realized that actually we can continue from here using the Dirac delta function:
\begin{aligned}
F[\widetilde{f}(x)]
&=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(k')e^{-i(k'+k)x} dk'dx \\
&=\int_{-\infty}^{+\infty} dk' f(k') \int_{-\infty}^{+\infty} e^{-i(k'+k)x} dx \\
&=\int_{-\infty}^{+\infty} dk' f(k')\ 2\pi\ \delta(k'+k) \\
&= 2\pi f(-k)
\end{aligned}

Ok! (flower)
Thanks a lot! (Smirk)
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K