MHB How Do You Prove a Specific Fourier Transform Property?

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Could you give me a hint how to prove the following property of the Fourier transform, when $F[f(x)]=\widetilde{f}(x)$, where $F[f(x)]$ is the Fourier transform of $f(x)$?

$$F[ \widetilde{f}(x) ]= \frac{f(-k)}{2 \pi}$$

We know that: $ \widetilde{f}(k)=\int_{- \infty}^{+ \infty}{ {f}(x) e^{-i k x}}dx$ and $f(x)=\frac{1}{2 \pi}\int_{- \infty}^{+ \infty}{ \widetilde{f}(k) e^{i k x}}dx$.

I thought the following:

$F[\widetilde{f}(x)]=\int_{-\infty}^{+\infty}{\widetilde{f}(x)e^{-ikx}}dx=2 \pi \frac{1}{2 \pi} \int_{-\infty}^{+\infty}{\widetilde{f}(x)e^{ix(-k)}}dx=2 \pi f(-k)$

But then $2 \pi$ would be at the numerator..
Have I done something wrong or can we not prove this in this way?

Then an other idea is:
$\widetilde{f}(x)=\int_{-\infty}^{+\infty}{\widetilde{f}(k)e^{-ikx}}dk \Rightarrow F[\widetilde{f}(x)]=F[\int_{-\infty}^{+\infty}{\widetilde{f}(k)e^{-ikx}}dk]=\int_{-\infty}^{+\infty}{\int_{-\infty}^{+\infty}{\widetilde{f}(k)e^{-2ikx}}}dkdx$
How could we continue?

Or is there an other way to prove the property?? (Worried)
 
Physics news on Phys.org
mathmari said:
Hey! :o

Could you give me a hint how to prove the following property of the Fourier transform, when $F[f(x)]=\widetilde{f}(x)$, where $F[f(x)]$ is the Fourier transform of $f(x)$?

$$F[ \widetilde{f}(x) ]= \frac{f(-k)}{2 \pi}$$

We know that: $ \widetilde{f}(k)=\int_{- \infty}^{+ \infty}{ {f}(x) e^{-i k x}}dx$ and $f(x)=\frac{1}{2 \pi}\int_{- \infty}^{+ \infty}{ \widetilde{f}(k) e^{i k x}}dx$.

I thought the following:

$F[\widetilde{f}(x)]=\int_{-\infty}^{+\infty}{\widetilde{f}(x)e^{-ikx}}dx=2 \pi \frac{1}{2 \pi} \int_{-\infty}^{+\infty}{\widetilde{f}(x)e^{ix(-k)}}dx=2 \pi f(-k)$

But then $2 \pi$ would be at the numerator..
Have I done something wrong or can we not prove this in this way?

Hi! :)

That is the correct way to prove it and your result is the right result.
None of the other common versions of the Fourier transform will give the result in your problem statement.
So it appears that your problem statement is wrong.

You can see the same result in this wiki table in the row labeled 105.
Your version of the Fourier transform is the last Fourier column in the table.
Then an other idea is:
$\widetilde{f}(x)=\int_{-\infty}^{+\infty}{\widetilde{f}(k)e^{-ikx}}dk \Rightarrow F[\widetilde{f}(x)]=F[\int_{-\infty}^{+\infty}{\widetilde{f}(k)e^{-ikx}}dk]=\int_{-\infty}^{+\infty}{\int_{-\infty}^{+\infty}{\widetilde{f}(k)e^{-2ikx}}}dkdx$
How could we continue?

This is not correct.
It should be:
\begin{aligned}\widetilde{f}(x)&=\int_{-\infty}^{+\infty}{f(k')e^{-ik'x}}dk' \\
\Rightarrow F[\widetilde{f}(x)]
&=F[\int_{-\infty}^{+\infty} f(k')e^{-ik'x} dk'] \\
&=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(k')e^{-ik'x} e^{-ikx} dk'dx \\
&=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(k')e^{-i(k'+k)x} dk'dx
\end{aligned}

Anyway, I do not see how you can continue with that.
 
I like Serena said:
Hi! :)

That is the correct way to prove it and your result is the right result.
None of the other common versions of the Fourier transform will give the result in your problem statement.
So it appears that your problem statement is wrong.

You can see the same result in this wiki table in the row labeled 105.
Your version of the Fourier transform is the last Fourier column in the table.

This is not correct.
It should be:
\begin{aligned}\widetilde{f}(x)&=\int_{-\infty}^{+\infty}{f(k')e^{-ik'x}}dk' \\
\Rightarrow F[\widetilde{f}(x)]
&=F[\int_{-\infty}^{+\infty} f(k')e^{-ik'x} dk'] \\
&=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(k')e^{-ik'x} e^{-ikx} dk'dx \\
&=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(k')e^{-i(k'+k)x} dk'dx
\end{aligned}

Anyway, I do not see how you can continue with that.

Ok! (Smile)
Thank you very much! (Smirk)
 
I realized that actually we can continue from here using the Dirac delta function:
\begin{aligned}
F[\widetilde{f}(x)]
&=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(k')e^{-i(k'+k)x} dk'dx \\
&=\int_{-\infty}^{+\infty} dk' f(k') \int_{-\infty}^{+\infty} e^{-i(k'+k)x} dx \\
&=\int_{-\infty}^{+\infty} dk' f(k')\ 2\pi\ \delta(k'+k) \\
&= 2\pi f(-k)
\end{aligned}
 
I like Serena said:
I realized that actually we can continue from here using the Dirac delta function:
\begin{aligned}
F[\widetilde{f}(x)]
&=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(k')e^{-i(k'+k)x} dk'dx \\
&=\int_{-\infty}^{+\infty} dk' f(k') \int_{-\infty}^{+\infty} e^{-i(k'+k)x} dx \\
&=\int_{-\infty}^{+\infty} dk' f(k')\ 2\pi\ \delta(k'+k) \\
&= 2\pi f(-k)
\end{aligned}

Ok! (flower)
Thanks a lot! (Smirk)
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...

Similar threads

Back
Top