MHB How Do You Prove That sa + tb Divides gcd(a, b) in Bezout's Lemma?

  • Thread starter Thread starter nicodemus1
  • Start date Start date
nicodemus1
Messages
16
Reaction score
0
Good Day,

I have to prove Bezout's Lemma.

I have proven that since gcd (a, b) divides a and gcd (a, b) divides b, gcd (a, b) divides sa + tb.

I've made use of the well-ordering principle and Euclid's Algorithm to show that sa + tb divides a and sa + tb divides b.

What I can't prove is that sa + tb divides gcd (a, b).

Please help me here.

Thank you.
 
Mathematics news on Phys.org
nicodemus said:
Good Day,

I have to prove Bezout's Lemma.

I have proven that since gcd (a, b) divides a and gcd (a, b) divides b, gcd (a, b) divides sa + tb.

I've made use of the well-ordering principle and Euclid's Algorithm to show that sa + tb divides a and sa + tb divides b.

What I can't prove is that sa + tb divides gcd (a, b).

Please help me here.

Thank you.

since d = gcd(a,b) is the largest positive integer that divides both a and b,

and d divides sa + tb, d ≤ sa + tb, whence sa + tb = d, since sa + tb divides both a and b.
 
Good Day,

Thank you for your reply.

However, I still don't get why sa + tb divides gcd(a, b).

Thanks & Regards,
Nicodemus
 
the "g" in gcd stands for "greatest". the "cd" stands for "common divisor".

since sa + tb is a common divisor of a and b, it cannot be "greater than" the greatest common divisor of a and b, can it?

EVERY number divides it self.

specifically, the DEFINTION of gcd(a,b) is:

d: d|a and d|b and (for all c: if c|a and c|b then c|d).

we have shown that c = sa + tb divides both a and b. therefore c|d.

do you have a different definition of gcd(a,b)?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top