MHB How Do You Solve for k in a Logarithmic Function with a Given Inverse?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Inverse Logarithm
AI Thread Summary
To solve for k in the logarithmic function f(x) = k log_2 x with the condition f^{-1}(1) = 8, the value of k is determined to be 1/3. This is derived by setting f(8) = 1, leading to the equation 3k = 1. Additionally, to find f^{-1}(2/3), the calculation shows that f^{-1}(2/3) equals 4, as derived from the logarithmic equation. The discussion highlights two approaches to arrive at the same conclusion regarding k and the inverse function. Overall, both methods confirm that k = 1/3 and f^{-1}(2/3) = 4.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Let $$f(x) = k\ log_2 x$$

(a) Given that $$f^{-1}(1)=8$$, find the value of $$k$$

to get $$f^{-1}(x)$$ exchange $$x$$ and $$y$$

$$x=log_2 y^k$$

then convert to exponential form

$$2^x=y^k $$ then $$2^{\frac{x}{k}} = y$$

so for $$f^{-1}(1) = 2^{\frac{1}{k}}= 8=2^3$$ then $$\frac{1}{k}=3$$ so $$k=\frac{1}{3}$$

(b) find $$f^{-1}\bigg(\frac{2}{3}\bigg)=2^{\frac{2}{3}\frac{3}{1}}=2^2=4$$
 
Mathematics news on Phys.org
Re: inverse log and find k

a) Another approach would be to use that:

$$f^{-1}(1)=8\implies f(8)=1$$

and so:

$$f(8)=f\left(2^3 \right)=k\log_2\left(2^3 \right)=3k=1\,\therefore\,k=\frac{1}{3}$$

b) We could write:

$$f^{-1}\left(\frac{2}{3} \right)=x$$

$$f(x)=\frac{2}{3}$$

$$\frac{1}{3}\log_2(x)=\frac{2}{3}$$

$$\log_2(x)=2$$

$$x=2^2=4$$

Hence:

$$f^{-1}\left(\frac{2}{3} \right)=4$$
 
Re: inverse log and find k

well that was a better idea...:cool:
 
Re: inverse log and find k

karush said:
well that was a better idea...:cool:

I wouldn't say better, just different. :D
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top