soroban
- 191
- 0
\text{We have: }\:\dfrac{1}{89} \;=\;0.01123595\,\,.\,.\,.
\text{The decimal is formed like this:}
. . 0.0{\bf1}
. . 0.00{\bf1}
. . 0.000{\bf2}
. . 0.0000{\bf3}
. . 0.00000{\bf5}
. . 0.000000{\bf8}
. . 0.000000{\bf{13}}
. . 0.0000000{\bf{21}}
. . 0.00000000{\bf{34}}
. . . . . . \vdots
\displaystyle\text{It seems that: }\:\frac{1}{10}\sum^{\infty}_{n=1} \frac{F_n}{10^n} \;=\;\frac{1}{89}
. . \text{where }F_n\text{ is the }n^{th}\text{ Fibonacci number.}
\text{Care to prove it?}