MHB How Does a Quasi-Nonexpansive Operator Function in Metric Spaces?

  • Thread starter Thread starter ozkan12
  • Start date Start date
  • Tags Tags
    Operator
Click For Summary
In a metric space (X,d), an operator T is defined as quasi nonexpansive if it possesses at least one fixed point p, satisfying the condition that the distance from T(x) to p is less than or equal to the distance from x to p. Additionally, a mapping condition is established where the distance between T(x) and T(y) is bounded by a function of the distances involving x and Tx, with δ in the range [0,1). By substituting specific values into this mapping condition, it is shown that the distance from T(x) to p can be constrained, ultimately leading to the conclusion that T is quasi nonexpansive if it meets the defined criteria. This discussion emphasizes the significance of fixed points and distance relationships in characterizing quasi nonexpansive operators in metric spaces. Understanding these properties is crucial for further exploration of operator behavior in mathematical analysis.
ozkan12
Messages
145
Reaction score
0
Let (X,d) be a metric space. An operator $T:X\to X$ is said to be quasi nonexpansive if T has at least one fixed point in X and, for each fixed point p, we have

$d\left(Tx,p\right)\le d\left(x,p\right)$ (1)

And also we give a mapping such that

$d\left(Tx,Ty\right)\le2\delta d\left(x,Tx\right)+\delta d\left(x,y\right)$ (2) for all x,y in X. Also $\delta \in [0,1)$.

İn (2) if we take x:= p and y:=x then we get,

$d\left(Tx,p\right)\le\delta d\left(x,p\right)<d\left(x,p\right)$. İn there, p is fixed point of T. (3)

İn (2), İf we take x:= p and y:=x we obtain d(Tx,p)=0, d(x,p)=0...So, How we write (3) ?...
 
Physics news on Phys.org
From (2) we can see that $d\left(Tx,p\right)\le2\delta d\left(x,Tx\right)+\delta d\left(x,p\right)$ for all x in X. Since $d\left(x,p\right)=0$ and $d\left(Tx,p\right)\ge 0$, we obtain $d\left(Tx,p\right)\le 2\delta d\left(x,Tx\right)$. Taking $\delta \in [0,1)$ implies $d\left(Tx,p\right)\le d\left(x,Tx\right)$. Hence, we can conclude that an operator T is quasi nonexpansive if it has at least one fixed point p, and for all x in X, we have $d\left(Tx,p\right)\le d\left(x,Tx\right)$.
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
Replies
8
Views
2K
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K