How Does Colatitude Affect the Direction of Coriolis Force?

  • Thread starter Thread starter drop_out_kid
  • Start date Start date
  • Tags Tags
    Dynamics Inertial
AI Thread Summary
Colatitude affects the direction of the Coriolis force, which is influenced by the Earth's rotation. The discussion highlights confusion regarding the interpretation of "due north" at a specific colatitude, with some participants suggesting that the direction should be radial toward the Earth's center of mass. The conversation also touches on the need to understand the vector direction of the Earth's angular velocity (denoted as ##\vec \Omega##) and its orthogonal components. Participants are encouraged to clarify these vector relationships to resolve the confusion. Understanding these concepts is crucial for accurately determining the Coriolis force's direction.
drop_out_kid
Messages
34
Reaction score
2
Homework Statement
I am stuck at getting the right direction of the coriolis force.. I can get the force amplitude by formula tho...
Relevant Equations
Coriolis force, centrifugal force
1650169278243.png


So I don't understand "due north from a position at colatitude ##\theta## " , whether how I translate it...

I keep getting that direction should be radial...(toward Earth CM)

This is my work:

1650169455634.png


Thank you so much!
 
Physics news on Phys.org
drop_out_kid said:
Homework Statement:: I am stuck at getting the right direction of the coriolis force.. I can get the force amplitude by formula tho...
Relevant Equations:: Coriolis force, centrifugal force

View attachment 300106

So I don't understand "due north from a position at colatitude ##\theta## " , whether how I translate it...

I keep getting that direction should be radial...(toward Earth CM)

This is my work:

View attachment 300107

Thank you so much!
What is the direction of the vector ##\vec \Omega##? What directions are orthogonal to both that and due north?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top