MHB How Does Complex Analysis Explain the Integral of Sin^2(x)/x^2?

Click For Summary
The integral of sin²(x)/x² from 0 to infinity equals π/2, which can be derived using complex analysis techniques. The discussion emphasizes using the hint involving the integral of (1 - e²ⁱˣ)/x² and the properties of the complex sine function. The application of the Parseval's identity for Fourier transforms is suggested as an alternative method for evaluating the integral. Additionally, the use of residue theory and the Cauchy Principal Value Theorem is highlighted, particularly in relation to the behavior of the function near its poles. Ultimately, the integral's evaluation confirms the result of π/2, showcasing the effectiveness of complex analysis in solving such integrals.
Dustinsfl
Messages
2,217
Reaction score
5
$$
\int_{0}^{\infty}\frac{\sin^2 x}{x^2}dx = \frac{\pi}{2}
$$.

[Hint: Consider the integral of $(1 - e^{2ix})/x^2)$.]

If we look at the complex sine, we have that $\sin z = \frac{e^{iz}-e^{-iz}}{2i}$. Then
$$
\sin^2z = \frac{e^{-2iz}-e^{2iz}}{4}
$$
so
$$
\frac{\sin^2 z}{z^2} = \frac{e^{-2iz}-e^{2iz}}{4z^2}
$$

I can't obtain the hint it is saying. What am I doing wrong?
 
Last edited:
Physics news on Phys.org
Is...

$\displaystyle \sin^{2} z= (\frac{e^{i z}-e^{- i z}}{2i})^{2}= - \frac{e^{2 i z} -2 + e^{-2 i z}}{4}$ (1)

Kind regards

$\chi$ $\sigma$
 
chisigma said:
Is...

$\displaystyle \sin^{2} z= (\frac{e^{i z}-e^{- i z}}{2i})^{2}= - \frac{e^{2 i z} -2 + e^{-2 i z}}{4}$ (1)

Kind regards

$\chi$ $\sigma$

From that, I don't see how we get the hint.
 
In my opinion the best way to compute the definite integral $\displaystyle \int_{- \infty}^{+ \infty} \frac{\sin^{2} x}{x^{2}}\ dx$ is the application of the Parseval's identity of the Fourier Transform...

$\displaystyle \int_{- \infty}^{+ \infty} |f(t)|^{2}\ dt = \frac{1}{2 \pi}\ \int_{- \infty}^{+ \infty} |F(\omega)|^{2}\ d \omega$ (1)

... to the function...

$\displaystyle f(t)=\begin{cases}1&\text{if}\ |t|<1\\ 0 &\text{if}\ |t|>1\end{cases}$ (2)

Kind regards

$\chi$ $\sigma$
 
chisigma said:
In my opinion the best way to compute the definite integral $\displaystyle \int_{- \infty}^{+ \infty} \frac{\sin^{2} x}{x^{2}}\ dx$ is the application of the Parseval's identity of the Fourier Transform...$\displaystyle \int_{- \infty}^{+ \infty} |f(t)|^{2}\ dt = \frac{1}{2 \pi}\ \int_{- \infty}^{+ \infty} |F(\omega)|^{2}\ d \omega$ (1)... to the function... $\displaystyle f(t)=\begin{cases}1&\text{if}\ |t|1\end{cases}$ (2)Kind regards $\chi$ $\sigma$
In the fall when I am taking Fourier Transforms & Series, this method may be great, but at the moment, it isn't.I need to use Residue Theory, Cauchy Principal Value Theorem, and complex integration.
 
Since $\frac{\sin^2 z}{z^2}$ is even,
$$
\int_{0}^{\infty}\frac{\sin^2 x}{x^2}dx = \frac{1}{2}\int_{-\infty}^{\infty}\frac{\sin^2 x}{x^2}dx
$$
and $\sin^2z = \frac{1 - \cos 2z}{2}$.

Then we have
$$
\frac{1}{4}\int_{-\infty}^{\infty}\frac{1 - \cos 2z}{z^2}dx
$$

How does $\cos 2z$ which is $\frac{e^{2iz}+e^{-2iz}}{2}$ go from that to simply $e^{-2iz}$?
 
$\displaystyle \int_{0}^{\infty} \frac{\sin^{2} x}{x^{2}} \ dx = \frac{1}{2} \int_{-\infty}^{\infty} \frac{\sin^{2} x}{x^{2}} \ dx = \frac{1}{2} \ \text{PV} \int_{-\infty}^{\infty} \frac{\sin^{2} x}{x^{2}} \ dx = \frac{1}{4} \ \text{Re} \ \text{PV}\int_{0}^{\infty} \frac{1-e^{2ix}}{x^{2}} \ dx $let $f\displaystyle (z) = \frac{1-e^{2iz}}{z^{2}}$

$\displaystyle \int_{-R}^{-r} f(x) \ dx + \int_{C_{r}} f(z) \ dz + \int_{r}^{R} f(x) \ dx + \int_{C_{R}} f(z) \ dz = 2 \pi i (0) = 0$

where $C_{r}$ is a small upper half circle of radius $r$ about the origin and $C_{R}$ is a large upper half circle of radius $R$$f(z)$ has a simple pole at the origin

$\displaystyle \frac{1- e^{2iz}}{z^{2}} = \frac{1 -(1 +2iz-2z^{2} + \ldots) }{z^{2}} = -\frac{2i}{z} + 2 + \ldots $now let $r$ go to zero and $R$ go to infinity

$\displaystyle \text{PV}\ \int_{-\infty}^{\infty} f(x) \ dx + \lim_{r \to 0} \int_{C_{r}} f(z) \ dz + \lim_{R \to \infty} \int_{C_{R}} f(z) \ dz = 0$since $z=0$ is a simple pole $\displaystyle \lim_{r \to 0} \int_{C_{r}} f(z) \ dz = - i \pi \text{Res}[f,0] = -i \pi (-2i) = -2 \pi $

and $\displaystyle \lim_{R \to \infty} \int_{C_{R}} f(z) \ dz = 0$ by Jordan's lemmaso $\displaystyle \int_{0}^{\infty} \frac{\sin^{2} x}{x^{2}} \ dx = \frac{1}{4} \text{Re} \ \text{PV} \int_{-\infty}^{\infty} f(x) \ dx = \frac{1}{4} (2 \pi) = \frac{\pi}{2}$
 
Random Variable said:
$\displaystyle \int_{0}^{\infty} \frac{\sin^{2} x}{x^{2}} \ dx = \frac{1}{2} \int_{-\infty}^{\infty} \frac{\sin^{2} x}{x^{2}} \ dx = \frac{1}{2} \ \text{PV} \int_{-\infty}^{\infty} \frac{\sin^{2} x}{x^{2}} \ dx = \frac{1}{4} \ \text{Re} \ \text{PV}\int_{0}^{\infty} \frac{1-e^{2ix}}{x^{2}} \ dx $let $f\displaystyle (z) = \frac{1-e^{2iz}}{z^{2}}$

$\displaystyle \int_{-R}^{-r} f(x) \ dx + \int_{C_{r}} f(z) \ dz + \int_{r}^{R} f(x) \ dx + \int_{C_{R}} f(z) \ dz = 2 \pi i (0) = 0$

where $C_{r}$ is a small upper half circle of radius $r$ about the origin and $C_{R}$ is a large upper half circle of radius $R$$f(z)$ has a simple pole at the origin

$\displaystyle \frac{1- e^{2iz}}{z^{2}} = \frac{1 -(1 +2iz-2z^{2} + \ldots) }{z^{2}} = -\frac{2i}{z} + 2 + \ldots $now let $r$ go to zero and $R$ go to infinity

$\displaystyle \text{PV}\ \int_{-\infty}^{\infty} f(x) \ dx + \lim_{r \to 0} \int_{C_{r}} f(z) \ dz + \lim_{R \to \infty} \int_{C_{R}} f(z) \ dz = 0$since $z=0$ is a simple pole $\displaystyle \lim_{r \to 0} \int_{C_{r}} f(z) \ dz = - i \pi \text{Res}[f,0] = -i \pi (-2i) = -2 \pi $

and $\displaystyle \lim_{R \to \infty} \int_{C_{R}} f(z) \ dz = 0$ by Jordan's lemmaso $\displaystyle \int_{0}^{\infty} \frac{\sin^{2} x}{x^{2}} \ dx = \frac{1}{4} \text{Re} \ \text{PV} \int_{-\infty}^{\infty} f(x) \ dx = \frac{1}{4} (2 \pi) = \frac{\pi}{2}$

This is great but it didn't answer the question I had in post 6. If it does, it isn't explicitly apparent.
 
$\displaystyle \text{PV} \int_{-\infty}^{\infty} \frac{1-e^{2ix}}{x^{2}} \ dx = \text{PV} \int_{-\infty}^{\infty} \frac{1-\cos 2x - i \sin 2x}{x^{2}} \ dx $

so $\displaystyle \text{Re} \ \text{PV} \int_{-\infty}^{\infty} \frac{1-e^{2ix}}{x^{2}} \ dx = \text{PV} \int_{-\infty}^{\infty} \frac{1-\cos 2x}{x^{2}} \ = \ \text{PV} \ 2 \int_{-\infty}^{\infty} \frac{\sin^{2} x}{x^{2}} \ dx = 2 \int_{-\infty}^{\infty} \frac{\sin^{2} x}{x^{2}} \ dx$ (since $\displaystyle \int_{-\infty}^{\infty} \frac{\sin^{2} x}{x^{2}} \ dx$ is a convergent integral)
 
Last edited:
  • #10
One last quick question. Why is your expansion of e neglecting division by division by n! for the respected term of the series?
Never mind I forgot to square the 2
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
877
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K