MHB How Does Complex Analysis Explain the Integral of Sin^2(x)/x^2?

Click For Summary
SUMMARY

The integral $$\int_{0}^{\infty}\frac{\sin^2 x}{x^2}dx$$ evaluates to $$\frac{\pi}{2}$$ through the application of complex analysis techniques, specifically using the residue theorem and Parseval's identity. The discussion highlights the transformation of the sine function into its complex exponential form, leading to the evaluation of the integral via the Cauchy Principal Value. The participants emphasize the importance of understanding complex integration and Fourier transforms in solving such integrals.

PREREQUISITES
  • Complex analysis, specifically residue theory
  • Fourier transforms and Parseval's identity
  • Cauchy Principal Value Theorem
  • Understanding of complex exponentials and trigonometric identities
NEXT STEPS
  • Study the application of the Residue Theorem in complex integration
  • Learn about Parseval's identity in the context of Fourier analysis
  • Explore the Cauchy Principal Value and its significance in improper integrals
  • Investigate the relationship between trigonometric functions and their complex representations
USEFUL FOR

Mathematicians, physicists, and students studying complex analysis or Fourier analysis, particularly those interested in evaluating integrals involving oscillatory functions.

Dustinsfl
Messages
2,217
Reaction score
5
$$
\int_{0}^{\infty}\frac{\sin^2 x}{x^2}dx = \frac{\pi}{2}
$$.

[Hint: Consider the integral of $(1 - e^{2ix})/x^2)$.]

If we look at the complex sine, we have that $\sin z = \frac{e^{iz}-e^{-iz}}{2i}$. Then
$$
\sin^2z = \frac{e^{-2iz}-e^{2iz}}{4}
$$
so
$$
\frac{\sin^2 z}{z^2} = \frac{e^{-2iz}-e^{2iz}}{4z^2}
$$

I can't obtain the hint it is saying. What am I doing wrong?
 
Last edited:
Physics news on Phys.org
Is...

$\displaystyle \sin^{2} z= (\frac{e^{i z}-e^{- i z}}{2i})^{2}= - \frac{e^{2 i z} -2 + e^{-2 i z}}{4}$ (1)

Kind regards

$\chi$ $\sigma$
 
chisigma said:
Is...

$\displaystyle \sin^{2} z= (\frac{e^{i z}-e^{- i z}}{2i})^{2}= - \frac{e^{2 i z} -2 + e^{-2 i z}}{4}$ (1)

Kind regards

$\chi$ $\sigma$

From that, I don't see how we get the hint.
 
In my opinion the best way to compute the definite integral $\displaystyle \int_{- \infty}^{+ \infty} \frac{\sin^{2} x}{x^{2}}\ dx$ is the application of the Parseval's identity of the Fourier Transform...

$\displaystyle \int_{- \infty}^{+ \infty} |f(t)|^{2}\ dt = \frac{1}{2 \pi}\ \int_{- \infty}^{+ \infty} |F(\omega)|^{2}\ d \omega$ (1)

... to the function...

$\displaystyle f(t)=\begin{cases}1&\text{if}\ |t|<1\\ 0 &\text{if}\ |t|>1\end{cases}$ (2)

Kind regards

$\chi$ $\sigma$
 
chisigma said:
In my opinion the best way to compute the definite integral $\displaystyle \int_{- \infty}^{+ \infty} \frac{\sin^{2} x}{x^{2}}\ dx$ is the application of the Parseval's identity of the Fourier Transform...$\displaystyle \int_{- \infty}^{+ \infty} |f(t)|^{2}\ dt = \frac{1}{2 \pi}\ \int_{- \infty}^{+ \infty} |F(\omega)|^{2}\ d \omega$ (1)... to the function... $\displaystyle f(t)=\begin{cases}1&\text{if}\ |t|1\end{cases}$ (2)Kind regards $\chi$ $\sigma$
In the fall when I am taking Fourier Transforms & Series, this method may be great, but at the moment, it isn't.I need to use Residue Theory, Cauchy Principal Value Theorem, and complex integration.
 
Since $\frac{\sin^2 z}{z^2}$ is even,
$$
\int_{0}^{\infty}\frac{\sin^2 x}{x^2}dx = \frac{1}{2}\int_{-\infty}^{\infty}\frac{\sin^2 x}{x^2}dx
$$
and $\sin^2z = \frac{1 - \cos 2z}{2}$.

Then we have
$$
\frac{1}{4}\int_{-\infty}^{\infty}\frac{1 - \cos 2z}{z^2}dx
$$

How does $\cos 2z$ which is $\frac{e^{2iz}+e^{-2iz}}{2}$ go from that to simply $e^{-2iz}$?
 
$\displaystyle \int_{0}^{\infty} \frac{\sin^{2} x}{x^{2}} \ dx = \frac{1}{2} \int_{-\infty}^{\infty} \frac{\sin^{2} x}{x^{2}} \ dx = \frac{1}{2} \ \text{PV} \int_{-\infty}^{\infty} \frac{\sin^{2} x}{x^{2}} \ dx = \frac{1}{4} \ \text{Re} \ \text{PV}\int_{0}^{\infty} \frac{1-e^{2ix}}{x^{2}} \ dx $let $f\displaystyle (z) = \frac{1-e^{2iz}}{z^{2}}$

$\displaystyle \int_{-R}^{-r} f(x) \ dx + \int_{C_{r}} f(z) \ dz + \int_{r}^{R} f(x) \ dx + \int_{C_{R}} f(z) \ dz = 2 \pi i (0) = 0$

where $C_{r}$ is a small upper half circle of radius $r$ about the origin and $C_{R}$ is a large upper half circle of radius $R$$f(z)$ has a simple pole at the origin

$\displaystyle \frac{1- e^{2iz}}{z^{2}} = \frac{1 -(1 +2iz-2z^{2} + \ldots) }{z^{2}} = -\frac{2i}{z} + 2 + \ldots $now let $r$ go to zero and $R$ go to infinity

$\displaystyle \text{PV}\ \int_{-\infty}^{\infty} f(x) \ dx + \lim_{r \to 0} \int_{C_{r}} f(z) \ dz + \lim_{R \to \infty} \int_{C_{R}} f(z) \ dz = 0$since $z=0$ is a simple pole $\displaystyle \lim_{r \to 0} \int_{C_{r}} f(z) \ dz = - i \pi \text{Res}[f,0] = -i \pi (-2i) = -2 \pi $

and $\displaystyle \lim_{R \to \infty} \int_{C_{R}} f(z) \ dz = 0$ by Jordan's lemmaso $\displaystyle \int_{0}^{\infty} \frac{\sin^{2} x}{x^{2}} \ dx = \frac{1}{4} \text{Re} \ \text{PV} \int_{-\infty}^{\infty} f(x) \ dx = \frac{1}{4} (2 \pi) = \frac{\pi}{2}$
 
Random Variable said:
$\displaystyle \int_{0}^{\infty} \frac{\sin^{2} x}{x^{2}} \ dx = \frac{1}{2} \int_{-\infty}^{\infty} \frac{\sin^{2} x}{x^{2}} \ dx = \frac{1}{2} \ \text{PV} \int_{-\infty}^{\infty} \frac{\sin^{2} x}{x^{2}} \ dx = \frac{1}{4} \ \text{Re} \ \text{PV}\int_{0}^{\infty} \frac{1-e^{2ix}}{x^{2}} \ dx $let $f\displaystyle (z) = \frac{1-e^{2iz}}{z^{2}}$

$\displaystyle \int_{-R}^{-r} f(x) \ dx + \int_{C_{r}} f(z) \ dz + \int_{r}^{R} f(x) \ dx + \int_{C_{R}} f(z) \ dz = 2 \pi i (0) = 0$

where $C_{r}$ is a small upper half circle of radius $r$ about the origin and $C_{R}$ is a large upper half circle of radius $R$$f(z)$ has a simple pole at the origin

$\displaystyle \frac{1- e^{2iz}}{z^{2}} = \frac{1 -(1 +2iz-2z^{2} + \ldots) }{z^{2}} = -\frac{2i}{z} + 2 + \ldots $now let $r$ go to zero and $R$ go to infinity

$\displaystyle \text{PV}\ \int_{-\infty}^{\infty} f(x) \ dx + \lim_{r \to 0} \int_{C_{r}} f(z) \ dz + \lim_{R \to \infty} \int_{C_{R}} f(z) \ dz = 0$since $z=0$ is a simple pole $\displaystyle \lim_{r \to 0} \int_{C_{r}} f(z) \ dz = - i \pi \text{Res}[f,0] = -i \pi (-2i) = -2 \pi $

and $\displaystyle \lim_{R \to \infty} \int_{C_{R}} f(z) \ dz = 0$ by Jordan's lemmaso $\displaystyle \int_{0}^{\infty} \frac{\sin^{2} x}{x^{2}} \ dx = \frac{1}{4} \text{Re} \ \text{PV} \int_{-\infty}^{\infty} f(x) \ dx = \frac{1}{4} (2 \pi) = \frac{\pi}{2}$

This is great but it didn't answer the question I had in post 6. If it does, it isn't explicitly apparent.
 
$\displaystyle \text{PV} \int_{-\infty}^{\infty} \frac{1-e^{2ix}}{x^{2}} \ dx = \text{PV} \int_{-\infty}^{\infty} \frac{1-\cos 2x - i \sin 2x}{x^{2}} \ dx $

so $\displaystyle \text{Re} \ \text{PV} \int_{-\infty}^{\infty} \frac{1-e^{2ix}}{x^{2}} \ dx = \text{PV} \int_{-\infty}^{\infty} \frac{1-\cos 2x}{x^{2}} \ = \ \text{PV} \ 2 \int_{-\infty}^{\infty} \frac{\sin^{2} x}{x^{2}} \ dx = 2 \int_{-\infty}^{\infty} \frac{\sin^{2} x}{x^{2}} \ dx$ (since $\displaystyle \int_{-\infty}^{\infty} \frac{\sin^{2} x}{x^{2}} \ dx$ is a convergent integral)
 
Last edited:
  • #10
One last quick question. Why is your expansion of e neglecting division by division by n! for the respected term of the series?
Never mind I forgot to square the 2
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
958
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K