MHB How Does Complex Function Behavior Constrain Within and Outside the Unit Disk?

  • Thread starter Thread starter Markov2
  • Start date Start date
  • Tags Tags
    Complex
Click For Summary
The discussion focuses on the behavior of complex functions within and outside the unit disk. Participants explore various mathematical problems, including the properties of an entire function constrained by specific conditions and the application of the Maximum Modulus Principle. The conversation highlights the use of Liouville's Theorem to demonstrate that certain periodic functions must be constant. Additionally, there is a request for clarification on applying Morera's Theorem and the Maximum Modulus Principle to specific problems. Overall, the thread emphasizes the interplay between complex analysis concepts and their implications for function behavior.
Markov2
Messages
149
Reaction score
0
Denote $D=\{z\in\mathbb C:|z|<1\}.$

1) Let $a\in\mathbb C$ with $|a|<1$ and $p(z)=\dfrac a2+(1-|a|^2)z-\dfrac{\overline a}2z^2.$ Show that for all $z\in D$ is $|p(z)|\le1.$

2) Characterize all the $f$ entire functions so that for each $z\in\overline D^c$ satisfy $\left| {f(z)} \right| \le {\left| z \right|^5} + \dfrac{1}{{{{\left| z \right|}^5}}} + \dfrac{1}{{{{\left| {z - 1} \right|}^3}}}.$

3) Let $w_1,w_2\in\mathbb C$ two $\mathbb R-$linearly independent numbers. Show that if $f\in\mathcal H(\mathbb C)$ is so that for each $z\in\mathbb C$ and $f(z+w_1)=f(z)=f(z+w_2),$ then $f$ is constant.

4) Let $\mathcal U\subset\mathbb C$ open and $z_0\in\mathcal U.$ Suppose that $f$ is continuous on $\mathcal U$ and analytic on $\mathcal U-\{z_0\}.$ Show that $f$ is analytic on $\mathcal U.$

Attempts:

1) I think I need to use the Maximum Modulus Principle, but I don't see how.

2) If I let $|z|=R$ then $\left| {f(z)} \right| \le {\left| R \right|^5} + \dfrac{1}{{{{\left| R \right|}^5}}} + \dfrac{1}{{{{\left| {R - 1} \right|}^3}}},$ but $f$ was given entire so it has convergent Taylor series and by using Cauchy's integral formula I can conclude that $f^{(k)}(0)=0$ for some $k\ge n,$ and then functions $f$ are polynomials of degree $n-1,$ does this make sense?

3) I think I could use Liouville here, but I don't have that $f$ is entire, but $f$ is periodic, right?, and a periodic entire function is bounded so I could conclude by using Liouville, but I don't have that $f$ is entire. Perhaps there's another way on doing this.

4) I think I should use a remarkable theorem here but I don't remember, it looks hard.
 
Last edited:
Physics news on Phys.org
3) Indeed, Liouville is the key. First we solve the case $\omega_1\in\mathbb R$. Show that the range of $f$ is the same as $f(Q)$, where $Q$ is diamond-shaped.
 
girdav said:
Show that the range of $f$ is the same as $f(Q)$, where $Q$ is diamond-shaped.
How would you do it? I don't see how, and what is "diamond-shaped?" I was looking at it but I didn't find the definition.

Can you help me with other problems please?
 
I need help for 1), am I on the right track? But I can't continue. Can anybody check my work for 2). Is 4) bad written? Because I see it contradicts itself.
 
I can't edit now but on problem 4) it's actually $\mathcal U\backslash\{z_0\}.$

I think we can apply Morera's Theorem here, but I don't know how.
 
For problem 1) mostly you're given with an inequality so that could apply the maximum modulus principle, but in this case I have $p(z)$ equal to something, so I don't see how to apply the MMP here, any help?

girdav could you please help me more on problem 3), and can anybody help for problem 4)?
 
If $\omega_1\in\mathbb R$ and $\omega_2=a+bi\in \mathbb C$ with $b\neq 0$ hen for $z=x+iy$, write $z=x+iy$, then choose an integer $n$ such that $y=nb+\xi$, where $\xi<|b|$, so $z=x+i(nb+\xi)=x+inb+i\xi+na-na$ and $f(z)=f(x+\xi i-na)$. Now choose an integer $m$ such that $x-na=m\omega_1+\xi'$ with $\xi'<|b|$.
 
Okay but what's the direction you're pointing at? Are you trying to prove that $f$ is bounded? But I don't get the procedure, or trying to prove that $f(\mathbb C)$ equals to $f(A\times A)$ where $A$ is a compact set?
 
Yes that's it. Putting $M:=\max(|b|,|\omega_1|)$, we can show that for each $z\in\mathbb C$, we can find two integers $m$ and $n$ such that $z=m\omega_1+n\omega_2+\xi_1+i\xi_2$ where $\xi_1,\xi_2\in [0,M]$.
 
  • #10
Okay so since $[0,M]$ is compact and $f$ is entire, we have that $f$ is constant by Liouville's Theorem. Is it okay or do we have to work with the other case? I mean the $w_2$ ?
 
  • #11
What do you mean by the other case? By commodity, I supposed that $\omega_1$ is a real number. So we just have to show that it's without lose of generality.
 
  • #12
Oh yes, yes, but is it okay by saying that since $[0,M]$ is compact and $f$ is entire, we have that $f$ is constant by Liouville's Theorem?

girdav, I need help with problem 1, I don't see how to use the maximum modulus principle, can you give me a hand?
 
  • #13
For the first problem, write $P(z)=\frac a2(1-z^2)+(1-|a|^2)z+\frac{a-\bar a}2z^2$.

In order to clarify the thread, maybe you can edit the first message and write which problems have already been solved.
 
  • #14
So I have $\displaystyle\left| {p(z)} \right| \le \frac{1}{2}\left| {1 - {z^2}} \right| + \left| {1 - {{\left| a \right|}^2}} \right|z + \frac{1}{2}\left| {a - \overline a } \right|{z^2} \le \frac{1}{2}(1 + 1) + (1 + 1) \cdot 1 + \operatorname{Im} (a) \cdot 1,$ but I don't get yet that $|p(z)|\le1,$ how to finish it?
 
  • #15
Your bound is too large, you can write $|p(z)|\leq |a|+|1-|a|^2|+|a|=-|a|^2+2|a|+1=-(|a|-1)^2+1\leq 1$.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 22 ·
Replies
22
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K