How Does Complex Function Behavior Constrain Within and Outside the Unit Disk?

  • Context: MHB 
  • Thread starter Thread starter Markov2
  • Start date Start date
  • Tags Tags
    Complex
Click For Summary

Discussion Overview

The discussion revolves around the behavior of complex functions within and outside the unit disk, specifically addressing several problems related to entire functions, their properties, and the application of various theorems in complex analysis. The scope includes theoretical exploration, mathematical reasoning, and problem-solving related to complex analysis concepts.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested
  • Homework-related

Main Points Raised

  • Participants discuss the application of the Maximum Modulus Principle to show that for a given function \( p(z) \), the inequality \( |p(z)| \le 1 \) holds for all \( z \in D \).
  • There is a characterization of entire functions \( f \) such that \( |f(z)| \) is bounded by a specific expression for \( z \in \overline{D}^c \).
  • One participant suggests using Liouville's Theorem to conclude that a periodic function \( f \) must be constant, although there is uncertainty about the conditions required for Liouville's application.
  • Another participant questions the clarity of problem 4 and suggests it may contain contradictions.
  • Several participants express confusion about the definition of "diamond-shaped" in relation to the range of the function \( f \).
  • There are discussions about the compactness of certain sets and how it relates to the constancy of entire functions.
  • Participants share various approaches to solving the problems, including the use of Morera's Theorem and the need for clarification on certain mathematical steps.

Areas of Agreement / Disagreement

Participants do not reach consensus on several points, including the application of the Maximum Modulus Principle, the interpretation of problem 4, and the conditions under which Liouville's Theorem can be applied. Multiple competing views remain on how to approach the problems presented.

Contextual Notes

There are limitations in the discussion regarding the assumptions made in the problems, particularly concerning the continuity and analyticity of functions in specific domains. Some mathematical steps remain unresolved, and definitions of terms like "diamond-shaped" are not provided, leading to further confusion.

Who May Find This Useful

This discussion may be useful for students and researchers in complex analysis, particularly those interested in the properties of entire functions and the application of key theorems in the field.

Markov2
Messages
149
Reaction score
0
Denote $D=\{z\in\mathbb C:|z|<1\}.$

1) Let $a\in\mathbb C$ with $|a|<1$ and $p(z)=\dfrac a2+(1-|a|^2)z-\dfrac{\overline a}2z^2.$ Show that for all $z\in D$ is $|p(z)|\le1.$

2) Characterize all the $f$ entire functions so that for each $z\in\overline D^c$ satisfy $\left| {f(z)} \right| \le {\left| z \right|^5} + \dfrac{1}{{{{\left| z \right|}^5}}} + \dfrac{1}{{{{\left| {z - 1} \right|}^3}}}.$

3) Let $w_1,w_2\in\mathbb C$ two $\mathbb R-$linearly independent numbers. Show that if $f\in\mathcal H(\mathbb C)$ is so that for each $z\in\mathbb C$ and $f(z+w_1)=f(z)=f(z+w_2),$ then $f$ is constant.

4) Let $\mathcal U\subset\mathbb C$ open and $z_0\in\mathcal U.$ Suppose that $f$ is continuous on $\mathcal U$ and analytic on $\mathcal U-\{z_0\}.$ Show that $f$ is analytic on $\mathcal U.$

Attempts:

1) I think I need to use the Maximum Modulus Principle, but I don't see how.

2) If I let $|z|=R$ then $\left| {f(z)} \right| \le {\left| R \right|^5} + \dfrac{1}{{{{\left| R \right|}^5}}} + \dfrac{1}{{{{\left| {R - 1} \right|}^3}}},$ but $f$ was given entire so it has convergent Taylor series and by using Cauchy's integral formula I can conclude that $f^{(k)}(0)=0$ for some $k\ge n,$ and then functions $f$ are polynomials of degree $n-1,$ does this make sense?

3) I think I could use Liouville here, but I don't have that $f$ is entire, but $f$ is periodic, right?, and a periodic entire function is bounded so I could conclude by using Liouville, but I don't have that $f$ is entire. Perhaps there's another way on doing this.

4) I think I should use a remarkable theorem here but I don't remember, it looks hard.
 
Last edited:
Physics news on Phys.org
3) Indeed, Liouville is the key. First we solve the case $\omega_1\in\mathbb R$. Show that the range of $f$ is the same as $f(Q)$, where $Q$ is diamond-shaped.
 
girdav said:
Show that the range of $f$ is the same as $f(Q)$, where $Q$ is diamond-shaped.
How would you do it? I don't see how, and what is "diamond-shaped?" I was looking at it but I didn't find the definition.

Can you help me with other problems please?
 
I need help for 1), am I on the right track? But I can't continue. Can anybody check my work for 2). Is 4) bad written? Because I see it contradicts itself.
 
I can't edit now but on problem 4) it's actually $\mathcal U\backslash\{z_0\}.$

I think we can apply Morera's Theorem here, but I don't know how.
 
For problem 1) mostly you're given with an inequality so that could apply the maximum modulus principle, but in this case I have $p(z)$ equal to something, so I don't see how to apply the MMP here, any help?

girdav could you please help me more on problem 3), and can anybody help for problem 4)?
 
If $\omega_1\in\mathbb R$ and $\omega_2=a+bi\in \mathbb C$ with $b\neq 0$ hen for $z=x+iy$, write $z=x+iy$, then choose an integer $n$ such that $y=nb+\xi$, where $\xi<|b|$, so $z=x+i(nb+\xi)=x+inb+i\xi+na-na$ and $f(z)=f(x+\xi i-na)$. Now choose an integer $m$ such that $x-na=m\omega_1+\xi'$ with $\xi'<|b|$.
 
Okay but what's the direction you're pointing at? Are you trying to prove that $f$ is bounded? But I don't get the procedure, or trying to prove that $f(\mathbb C)$ equals to $f(A\times A)$ where $A$ is a compact set?
 
Yes that's it. Putting $M:=\max(|b|,|\omega_1|)$, we can show that for each $z\in\mathbb C$, we can find two integers $m$ and $n$ such that $z=m\omega_1+n\omega_2+\xi_1+i\xi_2$ where $\xi_1,\xi_2\in [0,M]$.
 
  • #10
Okay so since $[0,M]$ is compact and $f$ is entire, we have that $f$ is constant by Liouville's Theorem. Is it okay or do we have to work with the other case? I mean the $w_2$ ?
 
  • #11
What do you mean by the other case? By commodity, I supposed that $\omega_1$ is a real number. So we just have to show that it's without lose of generality.
 
  • #12
Oh yes, yes, but is it okay by saying that since $[0,M]$ is compact and $f$ is entire, we have that $f$ is constant by Liouville's Theorem?

girdav, I need help with problem 1, I don't see how to use the maximum modulus principle, can you give me a hand?
 
  • #13
For the first problem, write $P(z)=\frac a2(1-z^2)+(1-|a|^2)z+\frac{a-\bar a}2z^2$.

In order to clarify the thread, maybe you can edit the first message and write which problems have already been solved.
 
  • #14
So I have $\displaystyle\left| {p(z)} \right| \le \frac{1}{2}\left| {1 - {z^2}} \right| + \left| {1 - {{\left| a \right|}^2}} \right|z + \frac{1}{2}\left| {a - \overline a } \right|{z^2} \le \frac{1}{2}(1 + 1) + (1 + 1) \cdot 1 + \operatorname{Im} (a) \cdot 1,$ but I don't get yet that $|p(z)|\le1,$ how to finish it?
 
  • #15
Your bound is too large, you can write $|p(z)|\leq |a|+|1-|a|^2|+|a|=-|a|^2+2|a|+1=-(|a|-1)^2+1\leq 1$.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 22 ·
Replies
22
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K