Jeff Reid said:
There's some initial state where a thermal is released and accelerates, but quickly reaches some relatively low vertical velocity. I don't know what causes thermal inversions or how thermal layers get trapped near the ground and get released as bubbles.
In order for hot air to rise, it has to be surrounded (horizontally) by cold air. The cold air forms a pressure gradient, which is horizontally transmitted to the hot air so it takes the same gradient. For cold air, this pressure gradient is exactly what's required to keep the cold air in place (otherwise it would rise or descend, changing the pressure gradient). For the hot air, which is less dense, the pressure gradient exceeds the weight of the hot air, so it is pushed up by the differential pressure.
Thermal layers and inversions can remain trapped for a long time if they are not horizontally connected to surrounding cold air. For example, a large area of land that is heated simultaneously, an area surrounded by higher terrain, etc... In this case they simply create their own pressure gradient which is exactly adapted to their weight.
From a molecular point of view:
- pressure is simply the net effect of billions of collisions of molecules.
- a volume of hot air with the same density as cold air will naturally have more pressure since every molecule carries a lot more momentum, and the collisions will be more frequent too.
- hot air expands because fast molecules tend to push the slow ones away. The situation stabilises when the density of the hot air has decreased enough to make the pressure equal (less molecules times more momentum per molecule makes the same pressure). Since any molecule on the boundary now gets the same total amount of push momentum from both sides, it will not tend to go anywhere on average. Individual molecules will still move about randomly, of course, but there will no longer be a general tendency for expansion.
- The vertical pressure gradient means each cold air molecule is getting slightly more collisions (or slightly more energetic ones) from below than from above which, on average, is just enough to support its weight. Obviously individual molecules are still moving in all directions randomly, but there is no general tendency for all the cold air molecules to start moving in any particular direction.
- The hot air molecules, too, are getting slightly more pushes from below than from above. Only, the same amount of total momentum (all the collisions from below vs. above) is distributed over a smaller number of hot molecules due to the lower density. On average, the hot molecules get more than their fair share of momentum from below, more than what would be required to support their weight, so they start moving up. Once again, individual molecules may very well go in opposite directions, you just add a small upward vector to the random vectors of the individual molecules, so that on average they tend to move up.
- The random motions of the molecules are very fast (a bit more than the speed of sound) but they don't go very far between collisions, only a few nanometers at a time before dashing off in another direction again. Therefore, this random brownian motion does not tend to take individual molecules very far. That's why the small upward tendency turns out to be very noticeable and does move pretty much the entire volume of hot air up as if it was one physical object (even though it isn't really). In fact this is precisely why macroscopic approximations work so well.
Obviously, once the upward motion starts, there will be a pressure reduction below the bubble and an increase above, which will stabilise the speed of the bubble.