A How Does One Calculate the Time Evolution of a Photon in a Vacuum State?

deepalakshmi
Messages
95
Reaction score
6
TL;DR Summary
How to evolve one photon using hamiltonian as beam splitter
During time evolution of one photon with vacuum state with hamiltonian as a^†b+b^†a, the answer is cos(t/ℏ)|0,1⟩+isin(t/ℏ)|1,0⟩. But i don't know how to do calculation to get this answer. Can someone please help me?
I tried to do this calculation:
|0⟩|1⟩(t)=e−iHtℏ|0⟩|1⟩
=(cos(tH/ℏ)−isin(tH/ℏ)) |0⟩|1⟩
=[cos(t/ℏ)−isin(t/ℏ)] H|0⟩|1⟩
=[cos(t/ℏ)−isin(t/ℏ)] [|0⟩|1⟩+i|1⟩|0⟩]

How to proceed?
 
Last edited:
Physics news on Phys.org
A:The Hamiltonian you are using is the Jaynes-Cummings Hamiltonian, which can be written as $$H=\hbar \omega (a^{\dagger}a+b^{\dagger}b+1/2).$$For this Hamiltonian, the time evolution of a state $|\psi(0)\rangle$ is given by $$|\psi(t)\rangle=e^{-iHt/\hbar}|\psi(0)\rangle.$$You are considering the initial state to be $|\psi(0)\rangle=|0\rangle|1\rangle$. Applying the time evolution operator to this state, we have\begin{align*}|\psi(t)\rangle&=e^{-iHt/\hbar}|0\rangle|1\rangle\\&=e^{-i\hbar \omega t/2}|0\rangle|1\rangle-ie^{-i\hbar \omega t/2}|1\rangle|0\rangle\\&=\cos(\omega t/2)|0\rangle|1\rangle+\sin(\omega t/2)|1\rangle|0\rangle\end{align*}This is the answer you are looking for. Note that I have used $\hbar \omega$ instead of $t/\hbar$ to make it consistent with the Hamiltonian.
 
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Back
Top