I How does one time-evolve a quantum state with its kernel function?

Sciencemaster
Messages
129
Reaction score
20
TL;DR Summary
I'd like to model the evolution of a squeezed state by representing it as a kernel function and applying a unitary transformation, but I'm having trouble doing this.
I'd like to model the evolution of a squeezed state and its properties (such as phase at different spatiotemporal coordinates). I know one can represent them using kernel functions (and I have found a paper that gives a kernel function for a squeezed state: https://arxiv.org/pdf/2105.05990.pdf). I've been told one can diagonalize the kernel function in terms of some eigenbasis and then represent the state in terms of a matrix representation with a truncated set of these eigenbasis functions, or alternatively just represent the kernel function in terms of a higher dimensional grid. Apparently you also need to represent the squeezing parameter in terms of a kernel function ($ξa^2→a\hat(k1)ξ(k1,k2)a\hat(k2)$) Once this is done, one can use unitary transformations on the matrix to actually simulate the system.
However, I'm having trouble doing this. Specifically, I'm stuck on trying to make a kernel function matrix from the paper and/or setting up an initial system (for example, let's say we have a Gaussian beam of squeezed light being emitted, and this simulation aims to time evolve this beam). Does anyone have any insights on how I can do this? Any help would be appreciated.
 
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Back
Top