A How Does Position Interact with Spin Angular Momentum in Quantum Mechanics?

Click For Summary
The discussion centers on the commutation relations between position and spin angular momentum in quantum mechanics. The spin angular momentum operator commutes with both position and momentum operators, as it operates in a different Hilbert space related to spin degrees of freedom. In non-relativistic quantum mechanics, spin is treated as an additional intrinsic angular momentum, leading to independent degrees of freedom that do not affect position or momentum commutation. However, the total angular momentum operator, which includes both spin and orbital components, does not commute with position or momentum. In relativistic quantum field theory, the analysis becomes more complex, requiring a deeper understanding of the Poincaré group.
dnl914
Messages
1
Reaction score
0
TL;DR
How do the position operator x and the spin angular momentum operator S commute?
I know how position and momentum commute, but now I have the spin angular momentum operator involved as well as a dot product. Specifically, what would the commutation [x,S·p] be?
 
Physics news on Phys.org
dnl914 said:
I know how position and momentum commute, but now I have the spin angular momentum operator involved as well as a dot product. Specifically, what would the commutation [x,S·p] be?
The spin angular momentum operator commutes with both position and momentum (i.e., its commutator with those operators vanishes), since it operates on a different part of the Hilbert space from those operators (the spin operator operates on the spin degrees of freedom, not the configuration space degrees of freedom).

Note that the total angular momentum operator, which includes orbital angular momentum as well as spin, does not commute with position or momentum (i.e., its commutator with those operators does not vanish).
 
  • Like
Likes vanhees71 and PeroK
dnl914 said:
TL;DR Summary: How do the position operator x and the spin angular momentum operator S commute?

I know how position and momentum commute, but now I have the spin angular momentum operator involved as well as a dot product. Specifically, what would the commutation [x,S·p] be?
The answer depends on whether you work in non-relativistic quantum mechanics of relativistic quantum-field theory.

In non-relativistic quantum mechanics the spin is just an additional "intrinsic angular momentum" degree of freedom, which is implement by a set of self-adjoint operators, obeying the angular-momentum commutation relations,
$$[\hat{s}_j,\hat{s}_k]=\mathrm{i} \hbar \epsilon_{jkl} \hat{s}_l.$$
Since it's providing entirely independent degrees of freedom, the spin operators commute with both position and momentum operators,
$$[\hat{s}_j,\hat{x}_k]=0,\quad [hat{s}_j,\hat{p}_k]=0.$$
You get the wave-mechanics description by choosing as a complete set of compatible observables the position, ##\hat{\vec{s}}^2##, and ##\hat{s}_3##.

A particle, in addition of mass, has the spin-quantum number ##s \in \{0,1/2,1 \ldots \}## as and additional intrinsic property. I.e., for a certain kind of partice you have only states with one ##s##. So a complete basis is ##|\vec{x},m_s \rangle## with ##m_s \in \{-s,-s+1,\ldots,s-1,s \}## fulfilling the eigenvalue equations
$$\hat{\vec{x}} |\vec{x},m_s \rangle=\vec{x} |\vec{x},m_s \rangle, \quad \hat{s}_3 |\vec{x},m_s \rangle=\hbar m_s |\vec{x},m_s \rangle, \quad \hat{\vec{s}}^2 |\vec{s},m_s \rangle=\hbar^2 s(s+1) |\vec{x},m_s \rangle.$$
The wave function is now a ##(2s+1)## component "spinor":
$$\psi(\vec{x})=\begin{pmatrix} \langle \vec{x},s|\psi \rangle \\ \langle \vec{x},s-1|\psi \rangle \\ \vdots \\ \langle \vec{x},-s|\psi \rangle \end{pmatrix} = \begin{pmatrix} \psi_s(\vec{x}) \\ \psi_{s-1}(\vec{x}) \\ \vdots \\ \psi_{-s}(\vec{x}) \end{pmatrix}.$$
The spin operators are represented as ##(2s+1) \times (2s+1)##-dimensional self-adjoint matrices
$$\vec{s}_{m_s m_s'}=\langle m_s|\hat{\vec{s}}|m_s' \rangle.$$
The spin entirely acts on the components of the spinor-valued wave function and does nothing related ##\vec{x}##
$$[\hat{\vec{s}} \psi(\vec{x})]_{m_s}=\sum_{m_s'=-s}^s \vec{s}_{m_s m_s'} \psi_{m_s'}(\vec{x}).$$
The position operator for wave functions is simply the multiplication with ##\vec{x}##, which commutes with the matrix multiplication of the wave funtion for spin. Also momentum is given as an operator acting on position-wave functions as ##\hat{\vec{p}}=-\mathrm{i} \hbar \vec{\nabla}##, which also commutes with the matrix multiplication of the wave function with the spin matrices.

In relativistic QFT it's an entirely different business. There you need the more complicated theory of the unitary representation of the Poincare group.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA

Similar threads

  • · Replies 4 ·
Replies
4
Views
422
Replies
2
Views
634
Replies
32
Views
3K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 4 ·
Replies
4
Views
433
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
Replies
17
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K