A How Does Position Interact with Spin Angular Momentum in Quantum Mechanics?

dnl914
Messages
1
Reaction score
0
TL;DR Summary
How do the position operator x and the spin angular momentum operator S commute?
I know how position and momentum commute, but now I have the spin angular momentum operator involved as well as a dot product. Specifically, what would the commutation [x,S·p] be?
 
Physics news on Phys.org
dnl914 said:
I know how position and momentum commute, but now I have the spin angular momentum operator involved as well as a dot product. Specifically, what would the commutation [x,S·p] be?
The spin angular momentum operator commutes with both position and momentum (i.e., its commutator with those operators vanishes), since it operates on a different part of the Hilbert space from those operators (the spin operator operates on the spin degrees of freedom, not the configuration space degrees of freedom).

Note that the total angular momentum operator, which includes orbital angular momentum as well as spin, does not commute with position or momentum (i.e., its commutator with those operators does not vanish).
 
  • Like
Likes vanhees71 and PeroK
dnl914 said:
TL;DR Summary: How do the position operator x and the spin angular momentum operator S commute?

I know how position and momentum commute, but now I have the spin angular momentum operator involved as well as a dot product. Specifically, what would the commutation [x,S·p] be?
The answer depends on whether you work in non-relativistic quantum mechanics of relativistic quantum-field theory.

In non-relativistic quantum mechanics the spin is just an additional "intrinsic angular momentum" degree of freedom, which is implement by a set of self-adjoint operators, obeying the angular-momentum commutation relations,
$$[\hat{s}_j,\hat{s}_k]=\mathrm{i} \hbar \epsilon_{jkl} \hat{s}_l.$$
Since it's providing entirely independent degrees of freedom, the spin operators commute with both position and momentum operators,
$$[\hat{s}_j,\hat{x}_k]=0,\quad [hat{s}_j,\hat{p}_k]=0.$$
You get the wave-mechanics description by choosing as a complete set of compatible observables the position, ##\hat{\vec{s}}^2##, and ##\hat{s}_3##.

A particle, in addition of mass, has the spin-quantum number ##s \in \{0,1/2,1 \ldots \}## as and additional intrinsic property. I.e., for a certain kind of partice you have only states with one ##s##. So a complete basis is ##|\vec{x},m_s \rangle## with ##m_s \in \{-s,-s+1,\ldots,s-1,s \}## fulfilling the eigenvalue equations
$$\hat{\vec{x}} |\vec{x},m_s \rangle=\vec{x} |\vec{x},m_s \rangle, \quad \hat{s}_3 |\vec{x},m_s \rangle=\hbar m_s |\vec{x},m_s \rangle, \quad \hat{\vec{s}}^2 |\vec{s},m_s \rangle=\hbar^2 s(s+1) |\vec{x},m_s \rangle.$$
The wave function is now a ##(2s+1)## component "spinor":
$$\psi(\vec{x})=\begin{pmatrix} \langle \vec{x},s|\psi \rangle \\ \langle \vec{x},s-1|\psi \rangle \\ \vdots \\ \langle \vec{x},-s|\psi \rangle \end{pmatrix} = \begin{pmatrix} \psi_s(\vec{x}) \\ \psi_{s-1}(\vec{x}) \\ \vdots \\ \psi_{-s}(\vec{x}) \end{pmatrix}.$$
The spin operators are represented as ##(2s+1) \times (2s+1)##-dimensional self-adjoint matrices
$$\vec{s}_{m_s m_s'}=\langle m_s|\hat{\vec{s}}|m_s' \rangle.$$
The spin entirely acts on the components of the spinor-valued wave function and does nothing related ##\vec{x}##
$$[\hat{\vec{s}} \psi(\vec{x})]_{m_s}=\sum_{m_s'=-s}^s \vec{s}_{m_s m_s'} \psi_{m_s'}(\vec{x}).$$
The position operator for wave functions is simply the multiplication with ##\vec{x}##, which commutes with the matrix multiplication of the wave funtion for spin. Also momentum is given as an operator acting on position-wave functions as ##\hat{\vec{p}}=-\mathrm{i} \hbar \vec{\nabla}##, which also commutes with the matrix multiplication of the wave function with the spin matrices.

In relativistic QFT it's an entirely different business. There you need the more complicated theory of the unitary representation of the Poincare group.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Back
Top