MHB How Does Probability Change with Each Roll of a Loaded Die?

  • Thread starter Thread starter Jason76
  • Start date Start date
Jason76
Messages
6
Reaction score
0
What would be f(x) - given the below information?

A die has its six faces loaded so that P(roll is i)=K*x for x=1,2,3,4,5,6. It is rolled until an even number appears. Let X be the number of rolls needed.

K + 2K + 3K + 4K + 5K + 6K = 1

is the correct format so

21K = 1

so

K = \dfrac{1}{21}

f(x) = \dfrac{1}{21}x ??
 
Mathematics news on Phys.org
Jason76 said:
What would be f(x) - given the below information?
A die has its six faces loaded so that P(roll is i)=K*x for x=1,2,3,4,5,6. It is rolled until an even number appears. Let X be the number of rolls needed.

K + 2K + 3K + 4K + 5K + 6K = 1

is the correct format so

21K = 1

so

K = \dfrac{1}{21}

f(x) = \dfrac{1}{21}x ??

Hi Jason76,

Let me take the liberty to rephrase your problem statement a bit, since I believe $i$ and $x$ are supposed to have different meanings.

A die has its six faces loaded so that P(roll is i)=K*i for i=1,2,3,4,5,6. It is rolled until an even number appears. Let X be the number of rolls needed.
Let $f(x)$ be the probability that $x$ rolls are needed until an even number appears.


Does that look right to you?

It would mean that f(1) is the probability that the very first roll is even, after which we stop.

So:
f(1) = P(1st roll is even) = P(roll is 2 or 4 or 6) = P(roll is 2) + P(roll is 4) + P(roll is 6) = 2/21 + 4/21 + 6/21 = 12/21

and:
f(2) = P(1st roll is odd and 2nd roll is even) = P(1st roll is odd) P(2nd roll is even)

What would f(2) be?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top