How Does Simplifying Exponential Expressions Work?

  • Context: MHB 
  • Thread starter Thread starter Alexstrasuz1
  • Start date Start date
  • Tags Tags
    Computer
Click For Summary
SUMMARY

The discussion focuses on simplifying the exponential expression $$\left(\frac{1}{2}\right)^{2-\frac{1}{2}\log_2(9)}$$. The simplification process involves applying logarithmic identities, resulting in the final value of $$\frac{3}{4}$$. Key steps include using properties such as $$x \log y = \log y^x$$ and $$\log x - \log y = \log \frac{x}{y}$$ to transform the expression systematically. The final result is confirmed through multiple methods, ensuring accuracy in the simplification.

PREREQUISITES
  • Understanding of logarithmic properties, specifically $$\log_b(xy) = \log_b x + \log_b y$$ and $$\log_b\left(\frac{x}{y}\right) = \log_b x - \log_b y$$.
  • Familiarity with exponential expressions and their manipulation.
  • Knowledge of the base-2 logarithm, denoted as $$\log_2$$.
  • Basic algebraic skills for handling fractions and exponents.
NEXT STEPS
  • Study the properties of logarithms in depth, focusing on change of base and manipulation techniques.
  • Learn about exponential functions and their applications in various mathematical contexts.
  • Practice simplifying complex exponential expressions using logarithmic identities.
  • Explore advanced topics in algebra, such as exponential growth and decay models.
USEFUL FOR

Students, educators, and anyone interested in mastering exponential expressions and logarithmic simplifications in mathematics.

Alexstrasuz1
Messages
20
Reaction score
0
View attachment 3134 sorry for posting like this my computer broke down. I have trouble with this task
 

Attachments

  • uploadfromtaptalk1410009170546.jpg
    uploadfromtaptalk1410009170546.jpg
    21.1 KB · Views: 117
Mathematics news on Phys.org
Alexstrasuz said:
View attachment 3134 sorry for posting like this my computer broke down. I have trouble with this task

Do you mean $$\left ( \frac{1}{2} \right )^2-12 \log_2 9$$ or $$\left ( \frac{1}{2} \right ) \cdot 2-12 \log_2 9$$ ??
 

Attachments

  • Capture.PNG
    Capture.PNG
    1.3 KB · Views: 113
Alexstrasuz said:
View attachment 3135
This is what I ment
EDIT:2-1/2log29
Is exponent of 1/2

Hi Alexstrasuz,

Okay, you have an expression that read $\left(\dfrac{1}{2}\right)^{2-\dfrac{1}{2\log_2 9}}$, what do you want to do about it? Do you mind to give us the exact working of the original problem?:)
 
Alexstrasuz said:
View attachment 3135
This is what I ment
EDIT:2-1/2log29
Is exponent of 1/2

$$\left ( \frac{1}{2} \right )^{2-\frac{1}{2} \log_2 9} \ \ \ \overset{x \log y=\log y^x}{=} \\ \left ( \frac{1}{2} \right )^{2- \log_2 9^{\frac{1}{2}}}= \left ( \frac{1}{2} \right )^{2- \log_2 3}=\left ( \frac{1}{2} \right )^{2\log_2 2- \log_2 3}=\left ( \frac{1}{2} \right )^{\log_2 2^2- \log_2 3}=\left ( \frac{1}{2} \right )^{\log_2 4- \log_2 3} \ \ \ \overset{\log x - \log y=\log \frac{x}{y}}{=} \ \ \ \left ( \frac{1}{2} \right )^{\log_2 \frac{4}{3}}=\frac{1}{2^{\log_2 \frac{4}{3}}} \ \ \ \overset{x^{\log_x y}=y}{=} \ \ \ \frac{1}{\frac{4}{3}}=\frac{3}{4}$$
 
Another way to proceed:

$$\left(\frac{1}{2}\right)^{2-\frac{1}{2}\log_2(9)}=2^{\log_2\left(\frac{3}{4}\right)}=\frac{3}{4}$$
 
Hello, Alexstrasuz!

Simplify: .\left(\frac{1}{2}\right)^{2-\log_2(9)}
We have: .\left(\frac{1}{2}\right)^2\cdot\left(\frac{1}{2}\right)^{-\frac{1}{2}\log_2(9)} \;=\;\frac{1}{2^2}\cdot 2^{\frac{1}{2}\!\log_2(9)} . **

\;=\;\frac{1}{4}\cdot 2^{\log_2(9^{\frac{1}{2}})} \;=\;\frac{1}{4}\cdot 2^{\log_2(3)}\;=\;\frac{1}{4}\cdot 3 \;=\;\frac{3}{4}** . Note that: .\left(\frac{a}{b}\right)^{-n} \;=\;\left(\frac{b}{a}\right)^n
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K