- #1
Mathsboi
- 3
- 0
I read this in a book (it was stats and about poisson approx to normal)
Given was this:
[tex]n(n-1)(n-2) \cdots (n-r+1) = \frac{n!}{(n-r)!} \approx n^r[/tex]
Stating that "Stirling's approximation" had been used.
So I looked the up and found:
[tex]\ln n! \approx n\ln n - n\ [/tex]
In the poisson distribution n is very large and [tex]r[/tex] is very small compared to [tex]n[/tex] so all the terms in the given equation approximate to [tex]n[/tex]... This gives me my [tex]\approx n^r[/tex]
But I just wondered where the Stirling equation comes into it...
[tex]\ln (\frac{n!}{(n-r)!}) = \ln(n!) - \ln((n-r)!) \ [/tex]
[tex]\approx n\ln n - n - \left[ (n-r)\ln((n-r)) - (n-r) \right]\ [/tex]
[tex]\approx n\ln n - n - (n-r)\ln((n-r)) + n - r \ [/tex]
[tex]\approx n\ln n - (n-r)\ln((n-r)) -r \ [/tex]
...
That's as far as I got...
[tex]\approx \ln (n^n) - \ln((n-r)^{(r-n)}) -r \ [/tex]
Unless taking logs, instead of to base e, to base n...
[tex]\approx Log_n (n^n) - Log_n ((n-r)^{(r-n)}) -r \ [/tex]
Then...
[tex]Log_n (n^n) - Log_n ((n-r)^{(r-n)}) = r\ [/tex]
[tex]n^n - (n-r)^{(n-r)} = n^r\ [/tex]
^ not sure if that's correct though
Can anyone help?
Given was this:
[tex]n(n-1)(n-2) \cdots (n-r+1) = \frac{n!}{(n-r)!} \approx n^r[/tex]
Stating that "Stirling's approximation" had been used.
So I looked the up and found:
[tex]\ln n! \approx n\ln n - n\ [/tex]
In the poisson distribution n is very large and [tex]r[/tex] is very small compared to [tex]n[/tex] so all the terms in the given equation approximate to [tex]n[/tex]... This gives me my [tex]\approx n^r[/tex]
But I just wondered where the Stirling equation comes into it...
[tex]\ln (\frac{n!}{(n-r)!}) = \ln(n!) - \ln((n-r)!) \ [/tex]
[tex]\approx n\ln n - n - \left[ (n-r)\ln((n-r)) - (n-r) \right]\ [/tex]
[tex]\approx n\ln n - n - (n-r)\ln((n-r)) + n - r \ [/tex]
[tex]\approx n\ln n - (n-r)\ln((n-r)) -r \ [/tex]
...
That's as far as I got...
[tex]\approx \ln (n^n) - \ln((n-r)^{(r-n)}) -r \ [/tex]
Unless taking logs, instead of to base e, to base n...
[tex]\approx Log_n (n^n) - Log_n ((n-r)^{(r-n)}) -r \ [/tex]
Then...
[tex]Log_n (n^n) - Log_n ((n-r)^{(r-n)}) = r\ [/tex]
[tex]n^n - (n-r)^{(n-r)} = n^r\ [/tex]
^ not sure if that's correct though
Can anyone help?