I How Does the A/B Relationship Connect to Geometric Series?

Click For Summary
The discussion explores a relationship between the variables a and b expressed through an infinite series, leading to interesting mathematical results. It highlights that for a = 1 and b = 2, the series diverges, resulting in an alternating series that sums to 1/2 using Cesaro summation. By factoring out a and substituting x = 1/(b-1), the series is identified as a geometric series that converges under specific conditions. The convergence criteria indicate that b must be less than 0 or greater than 2 for the series to be valid. Overall, the relationship connects A/B ratios to geometric series properties, inviting further exploration and research.
Jehannum
Messages
102
Reaction score
26
While working on a probability problem I accidentally found this relationship:

$$\frac a b = \frac a {(b-1)} - \frac a {{(b-1)}^2} + \frac a {{(b-1)}^3} - \frac a {{(b-1)}^4} + ~...$$
I have done a bit of work on it myself, and have tried to research similar series. It seems to lead to some interesting results. For example, when a = 1 and b = 2 it doesn't work because you get 1 - 1 + 1 - 1 + 1 ... but it's interesting that the Cesaro sum of this series is 1/2.

Can anyone provide links or information on anything relevant?
 
Mathematics news on Phys.org
Jehannum said:
While working on a probability problem I accidentally found this relationship:

$$\frac a b = \frac a {(b-1)} - \frac a {{(b-1)}^2} + \frac a {{(b-1)}^3} - \frac a {{(b-1)}^4} + ~...$$
I have done a bit of work on it myself, and have tried to research similar series. It seems to lead to some interesting results. For example, when a = 1 and b = 2 it doesn't work because you get 1 - 1 + 1 - 1 + 1 ... but it's interesting that the Cesaro sum of this series is 1/2.

Can anyone provide links or information on anything relevant?
Taking out the common factor of ##a## and letting ##x = \frac{1}{b - 1}##, you have a geometric series:
$$S = x - x^2 + x^3 - x^4 + \dots$$This converges for ##|x| < 1## to ##S = \frac{x}{1+ x}##, and a bit of algebra shows that indeed:$$\frac{x}{1+ x} = \frac 1 b$$And ##|x| < 1## implies ##b < 0## or ##b > 2##. In particular, this series does not converge for ##b = 2##.
 
  • Like
  • Informative
Likes nuuskur, mfb and berkeman

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
4
Views
1K
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
17
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K