Undergrad How Does the A/B Relationship Connect to Geometric Series?

Click For Summary
The discussion explores a relationship between the variables a and b expressed through an infinite series, leading to interesting mathematical results. It highlights that for a = 1 and b = 2, the series diverges, resulting in an alternating series that sums to 1/2 using Cesaro summation. By factoring out a and substituting x = 1/(b-1), the series is identified as a geometric series that converges under specific conditions. The convergence criteria indicate that b must be less than 0 or greater than 2 for the series to be valid. Overall, the relationship connects A/B ratios to geometric series properties, inviting further exploration and research.
Jehannum
Messages
102
Reaction score
26
While working on a probability problem I accidentally found this relationship:

$$\frac a b = \frac a {(b-1)} - \frac a {{(b-1)}^2} + \frac a {{(b-1)}^3} - \frac a {{(b-1)}^4} + ~...$$
I have done a bit of work on it myself, and have tried to research similar series. It seems to lead to some interesting results. For example, when a = 1 and b = 2 it doesn't work because you get 1 - 1 + 1 - 1 + 1 ... but it's interesting that the Cesaro sum of this series is 1/2.

Can anyone provide links or information on anything relevant?
 
Mathematics news on Phys.org
Jehannum said:
While working on a probability problem I accidentally found this relationship:

$$\frac a b = \frac a {(b-1)} - \frac a {{(b-1)}^2} + \frac a {{(b-1)}^3} - \frac a {{(b-1)}^4} + ~...$$
I have done a bit of work on it myself, and have tried to research similar series. It seems to lead to some interesting results. For example, when a = 1 and b = 2 it doesn't work because you get 1 - 1 + 1 - 1 + 1 ... but it's interesting that the Cesaro sum of this series is 1/2.

Can anyone provide links or information on anything relevant?
Taking out the common factor of ##a## and letting ##x = \frac{1}{b - 1}##, you have a geometric series:
$$S = x - x^2 + x^3 - x^4 + \dots$$This converges for ##|x| < 1## to ##S = \frac{x}{1+ x}##, and a bit of algebra shows that indeed:$$\frac{x}{1+ x} = \frac 1 b$$And ##|x| < 1## implies ##b < 0## or ##b > 2##. In particular, this series does not converge for ##b = 2##.
 
  • Like
  • Informative
Likes nuuskur, mfb and berkeman
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 17 ·
Replies
17
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K